È passato molto tempo, ma ho dovuto affrontare anche lo stesso problema. E ho trovato qui molte risposte interessanti. Quindi ero confuso quale metodo usare.
Nel caso di aggiungere molte righe al frame di dati, sono interessato alle prestazioni di velocità . Quindi ho provato 4 metodi più popolari e ho verificato la loro velocità.
AGGIORNATO NEL 2019 utilizzando nuove versioni di pacchetti. Aggiornato anche dopo il commento @FooBar
PRESTAZIONI DI VELOCITÀ
- Utilizzo di .append ( risposta di NPE )
- Usare .loc ( la risposta di fred )
- Usare .loc con preallocazione ( la risposta di FooBar )
- Utilizzando dict e creare DataFrame alla fine ( la risposta di ShikharDua )
Risultati (in secondi):
|------------|-------------|-------------|-------------|
| Approach | 1000 rows | 5000 rows | 10 000 rows |
|------------|-------------|-------------|-------------|
| .append | 0.69 | 3.39 | 6.78 |
|------------|-------------|-------------|-------------|
| .loc w/o | 0.74 | 3.90 | 8.35 |
| prealloc | | | |
|------------|-------------|-------------|-------------|
| .loc with | 0.24 | 2.58 | 8.70 |
| prealloc | | | |
|------------|-------------|-------------|-------------|
| dict | 0.012 | 0.046 | 0.084 |
|------------|-------------|-------------|-------------|
Anche grazie a @krassowski per un commento utile - ho aggiornato il codice.
Quindi uso l'aggiunta tramite il dizionario per me stesso.
Codice:
import pandas as pd
import numpy as np
import time
del df1, df2, df3, df4
numOfRows = 1000
# append
startTime = time.perf_counter()
df1 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows-4):
df1 = df1.append( dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']), ignore_index=True)
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df1.shape)
# .loc w/o prealloc
startTime = time.perf_counter()
df2 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows):
df2.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df2.shape)
# .loc with prealloc
df3 = pd.DataFrame(index=np.arange(0, numOfRows), columns=['A', 'B', 'C', 'D', 'E'] )
startTime = time.perf_counter()
for i in range( 1,numOfRows):
df3.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df3.shape)
# dict
startTime = time.perf_counter()
row_list = []
for i in range (0,5):
row_list.append(dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']))
for i in range( 1,numOfRows-4):
dict1 = dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E'])
row_list.append(dict1)
df4 = pd.DataFrame(row_list, columns=['A','B','C','D','E'])
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df4.shape)
PS Credo che la mia realizzazione non sia perfetta e forse c'è qualche ottimizzazione.