La risposta fornita da rcs funziona ed è semplice. Tuttavia, se stai gestendo set di dati più grandi e hai bisogno di un aumento delle prestazioni, c'è un'alternativa più veloce:
library(data.table)
data = data.table(Category=c("First","First","First","Second","Third", "Third", "Second"),
Frequency=c(10,15,5,2,14,20,3))
data[, sum(Frequency), by = Category]
# Category V1
# 1: First 30
# 2: Second 5
# 3: Third 34
system.time(data[, sum(Frequency), by = Category] )
# user system elapsed
# 0.008 0.001 0.009
Confrontiamolo con la stessa cosa usando data.frame e sopra sopra:
data = data.frame(Category=c("First","First","First","Second","Third", "Third", "Second"),
Frequency=c(10,15,5,2,14,20,3))
system.time(aggregate(data$Frequency, by=list(Category=data$Category), FUN=sum))
# user system elapsed
# 0.008 0.000 0.015
E se vuoi mantenere la colonna questa è la sintassi:
data[,list(Frequency=sum(Frequency)),by=Category]
# Category Frequency
# 1: First 30
# 2: Second 5
# 3: Third 34
La differenza diventerà più evidente con set di dati più grandi, come dimostra il codice seguente:
data = data.table(Category=rep(c("First", "Second", "Third"), 100000),
Frequency=rnorm(100000))
system.time( data[,sum(Frequency),by=Category] )
# user system elapsed
# 0.055 0.004 0.059
data = data.frame(Category=rep(c("First", "Second", "Third"), 100000),
Frequency=rnorm(100000))
system.time( aggregate(data$Frequency, by=list(Category=data$Category), FUN=sum) )
# user system elapsed
# 0.287 0.010 0.296
Per più aggregazioni, è possibile combinare lapply
e .SD
come segue
data[, lapply(.SD, sum), by = Category]
# Category Frequency
# 1: First 30
# 2: Second 5
# 3: Third 34
rowsum
.