import pandas as pd
import numpy as np
df = pd.DataFrame({'ItemQty': {0: 3, 1: 25},
'Seatblocks': {0: '2:218:10:4,6', 1: '1:13:36:1,12 1:13:37:1,13'},
'ItemExt': {0: 60, 1: 300},
'CustomerName': {0: 'McCartney, Paul', 1: 'Lennon, John'},
'CustNum': {0: 32363, 1: 31316},
'Item': {0: 'F04', 1: 'F01'}},
columns=['CustNum','CustomerName','ItemQty','Item','Seatblocks','ItemExt'])
print (df)
CustNum CustomerName ItemQty Item Seatblocks ItemExt
0 32363 McCartney, Paul 3 F04 2:218:10:4,6 60
1 31316 Lennon, John 25 F01 1:13:36:1,12 1:13:37:1,13 300
Un'altra soluzione simile con il concatenamento è l'uso reset_index
e rename
:
print (df.drop('Seatblocks', axis=1)
.join
(
df.Seatblocks
.str
.split(expand=True)
.stack()
.reset_index(drop=True, level=1)
.rename('Seatblocks')
))
CustNum CustomerName ItemQty Item ItemExt Seatblocks
0 32363 McCartney, Paul 3 F04 60 2:218:10:4,6
1 31316 Lennon, John 25 F01 300 1:13:36:1,12
1 31316 Lennon, John 25 F01 300 1:13:37:1,13
Se nella colonna NON ci sono NaN
valori, la soluzione più veloce è usare la list
comprensione con il DataFrame
costruttore:
df = pd.DataFrame(['a b c']*100000, columns=['col'])
In [141]: %timeit (pd.DataFrame(dict(zip(range(3), [df['col'].apply(lambda x : x.split(' ')[i]) for i in range(3)]))))
1 loop, best of 3: 211 ms per loop
In [142]: %timeit (pd.DataFrame(df.col.str.split().tolist()))
10 loops, best of 3: 87.8 ms per loop
In [143]: %timeit (pd.DataFrame(list(df.col.str.split())))
10 loops, best of 3: 86.1 ms per loop
In [144]: %timeit (df.col.str.split(expand=True))
10 loops, best of 3: 156 ms per loop
In [145]: %timeit (pd.DataFrame([ x.split() for x in df['col'].tolist()]))
10 loops, best of 3: 54.1 ms per loop
Ma se la colonna contiene NaN
funziona solo str.split
con un parametro expand=True
che restituisce DataFrame
( documentazione ) e spiega perché è più lento:
df = pd.DataFrame(['a b c']*10, columns=['col'])
df.loc[0] = np.nan
print (df.head())
col
0 NaN
1 a b c
2 a b c
3 a b c
4 a b c
print (df.col.str.split(expand=True))
0 1 2
0 NaN None None
1 a b c
2 a b c
3 a b c
4 a b c
5 a b c
6 a b c
7 a b c
8 a b c
9 a b c