Il mio cluster: 1 master, 11 slave, ogni nodo ha 6 GB di memoria.
Le mie impostazioni:
spark.executor.memory=4g, Dspark.akka.frameSize=512
Ecco il problema:
Innanzitutto , ho letto alcuni dati (2,19 GB) da HDFS a RDD:
val imageBundleRDD = sc.newAPIHadoopFile(...)
Secondo , fai qualcosa su questo RDD:
val res = imageBundleRDD.map(data => {
val desPoints = threeDReconstruction(data._2, bg)
(data._1, desPoints)
})
Infine , output su HDFS:
res.saveAsNewAPIHadoopFile(...)
Quando eseguo il mio programma mostra:
.....
14/01/15 21:42:27 INFO cluster.ClusterTaskSetManager: Starting task 1.0:24 as TID 33 on executor 9: Salve7.Hadoop (NODE_LOCAL)
14/01/15 21:42:27 INFO cluster.ClusterTaskSetManager: Serialized task 1.0:24 as 30618515 bytes in 210 ms
14/01/15 21:42:27 INFO cluster.ClusterTaskSetManager: Starting task 1.0:36 as TID 34 on executor 2: Salve11.Hadoop (NODE_LOCAL)
14/01/15 21:42:28 INFO cluster.ClusterTaskSetManager: Serialized task 1.0:36 as 30618515 bytes in 449 ms
14/01/15 21:42:28 INFO cluster.ClusterTaskSetManager: Starting task 1.0:32 as TID 35 on executor 7: Salve4.Hadoop (NODE_LOCAL)
Uncaught error from thread [spark-akka.actor.default-dispatcher-3] shutting down JVM since 'akka.jvm-exit-on-fatal-error' is enabled for ActorSystem[spark]
java.lang.OutOfMemoryError: Java heap space
Ci sono troppi compiti?
PS : tutto è ok quando i dati di input sono di circa 225 MB.
Come posso risolvere questo problema?