Rilevamento del segnale di picco in tempo reale in serie di dati


243

Aggiornamento: l'algoritmo più performante finora è questo .


Questa domanda esplora solidi algoritmi per il rilevamento di picchi improvvisi nei dati in tempo reale della serie.

Considera il seguente set di dati:

p = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1 1 1 1.1 0.9 1 1.1 1 1 0.9 1, ...
     1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1 1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1 1 3, ... 
     2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

(Formato Matlab ma non riguarda la lingua ma l'algoritmo)

Trama di dati

Puoi vedere chiaramente che ci sono tre grandi cime e alcune piccole cime. Questo set di dati è un esempio specifico della classe di set di dati della serie temporale di cui tratta la domanda. Questa classe di set di dati ha due caratteristiche generali:

  1. C'è un rumore di base con una media generale
  2. Esistono grandi " picchi " o " punti dati più alti " che si discostano in modo significativo dal rumore.

Supponiamo anche quanto segue:

  • la larghezza dei picchi non può essere determinata in anticipo
  • l'altezza delle vette si discosta chiaramente e significativamente dagli altri valori
  • l'algoritmo utilizzato deve calcolare in tempo reale (quindi cambia con ogni nuovo punto dati)

Per una tale situazione, è necessario costruire un valore limite che inneschi segnali. Tuttavia, il valore limite non può essere statico e deve essere determinato in tempo reale sulla base di un algoritmo.


La mia domanda: qual è un buon algoritmo per calcolare tali soglie in tempo reale? Esistono algoritmi specifici per tali situazioni? Quali sono gli algoritmi più noti?


Algoritmi robusti o approfondimenti utili sono tutti molto apprezzati. (può rispondere in qualsiasi lingua: riguarda l'algoritmo)


5
Ci deve essere un requisito di altezza assoluta per essere un picco oltre ai requisiti che hai già indicato. Altrimenti, il picco al momento 13 dovrebbe essere considerato un picco. (Equivalentemente: se in futuro i picchi salivano a circa 1000 o giù di lì, allora i due picchi a 25 e 35 non dovrebbero essere considerati picchi.)
j_random_hacker

Sono d'accordo. Supponiamo che questi picchi siano quelli che dobbiamo considerare solo.
Jean-Paul,

È possibile che tu stia facendo la domanda sbagliata. Invece di chiedere come è possibile rilevare senza indugio, si potrebbe chiedere se è possibile rilevare senza indugio un certo tipo di segnale dato solo ciò che è noto prima di quel momento, o cosa occorre sapere su un segnale per rilevare qualcosa con un determinato ritardo.
hotpaw2,

2
Lo facevo per rilevare un brusco cambiamento dell'intensità della luce su un fotosensore. Ho fatto questo spostando la media e ignorando tutti i punti di dati che sono più grandi di una soglia. Si noti che questa soglia è diversa dalla soglia che determina un picco. Quindi, supponiamo di includere solo i punti dati che si trovano all'interno di uno stddev alla media mobile e di considerare quei picchi dati con più di tre stddev come picchi. Questo algoritmo ha funzionato molto bene per il nostro contesto di applicazione quella volta.
solo il

1
Ah, capisco. Non me l'aspettavo nel modulo di codice. Se avessi visto questa domanda in precedenza probabilmente otterresti quella risposta molto più velocemente = D. Ad ogni modo, la mia applicazione in quel momento era di rilevare se il fotosensore è ostruito dalla sorgente di luce ambientale (ecco perché abbiamo bisogno della media mobile, poiché la sorgente di luce ambientale potrebbe cambiare gradualmente nel tempo). Abbiamo creato questo come un gioco in cui dovresti passare la mano sui sensori seguendo uno schema specifico. = D
justhalf

Risposte:


334

Algoritmo di rilevamento dei picchi robusto (usando i punteggi z)

Ho ideato un algoritmo che funziona molto bene con questi tipi di set di dati. Si basa sul principio di dispersione : se un nuovo punto dati è un dato numero x di deviazioni standard lontano da una media mobile, i segnali dell'algoritmo (chiamato anche z-score ). L'algoritmo è molto robusto perché costruisce una media mobile e una deviazione separate , in modo tale che i segnali non corrompano la soglia. I segnali futuri vengono quindi identificati con approssimativamente la stessa accuratezza, indipendentemente dalla quantità di segnali precedenti. L'algoritmo prende 3 ingressi: lag = the lag of the moving window, threshold = the z-score at which the algorithm signalse influence = the influence (between 0 and 1) of new signals on the mean and standard deviation. Ad esempio, un valore lagdi 5 utilizzerà le ultime 5 osservazioni per uniformare i dati. UNthresholddi 3,5 segnalerà se un punto dati è di 3,5 deviazioni standard dalla media mobile. E un valore influencedi 0,5 fornisce alla metà dei segnali l'influenza che hanno i normali punti dati. Allo stesso modo, uno influencedi 0 ignora completamente i segnali per ricalcolare la nuova soglia. Un'influenza di 0 è quindi l'opzione più solida (ma assume la stazionarietà ); mettere l'opzione di influenza su 1 è meno robusto. Per i dati non stazionari, l'opzione di influenza dovrebbe quindi essere posizionata tra 0 e 1.

Funziona come segue:

pseudocodice

# Let y be a vector of timeseries data of at least length lag+2
# Let mean() be a function that calculates the mean
# Let std() be a function that calculates the standard deviaton
# Let absolute() be the absolute value function

# Settings (the ones below are examples: choose what is best for your data)
set lag to 5;          # lag 5 for the smoothing functions
set threshold to 3.5;  # 3.5 standard deviations for signal
set influence to 0.5;  # between 0 and 1, where 1 is normal influence, 0.5 is half

# Initialize variables
set signals to vector 0,...,0 of length of y;   # Initialize signal results
set filteredY to y(1),...,y(lag)                # Initialize filtered series
set avgFilter to null;                          # Initialize average filter
set stdFilter to null;                          # Initialize std. filter
set avgFilter(lag) to mean(y(1),...,y(lag));    # Initialize first value
set stdFilter(lag) to std(y(1),...,y(lag));     # Initialize first value

for i=lag+1,...,t do
  if absolute(y(i) - avgFilter(i-1)) > threshold*stdFilter(i-1) then
    if y(i) > avgFilter(i-1) then
      set signals(i) to +1;                     # Positive signal
    else
      set signals(i) to -1;                     # Negative signal
    end
    # Reduce influence of signal
    set filteredY(i) to influence*y(i) + (1-influence)*filteredY(i-1);
  else
    set signals(i) to 0;                        # No signal
    set filteredY(i) to y(i);
  end
  # Adjust the filters
  set avgFilter(i) to mean(filteredY(i-lag),...,filteredY(i));
  set stdFilter(i) to std(filteredY(i-lag),...,filteredY(i));
end

Di seguito sono riportate le regole empiriche per la selezione di buoni parametri per i dati.


dimostrazione

Dimostrazione di un robusto algoritmo di soglia

Il codice Matlab per questa demo è disponibile qui . Per utilizzare la demo, eseguila semplicemente e crea una serie temporale facendo clic sul grafico superiore. L'algoritmo inizia a funzionare dopo aver disegnato il lagnumero di osservazioni.


Risultato

Per la domanda originale, questo algoritmo fornirà il seguente output quando si utilizzano le seguenti impostazioni lag = 30, threshold = 5, influence = 0:

Esempio di algoritmo di soglia


Implementazioni in diversi linguaggi di programmazione:


Regole empiriche per la configurazione dell'algoritmo

lag: il parametro lag determina la quantità di dati che verranno lisciati e l'adattamento dell'algoritmo ai cambiamenti nella media a lungo termine dei dati. Più i dati sono fissi , più ritardi dovresti includere (ciò dovrebbe migliorare la robustezza dell'algoritmo). Se i tuoi dati contengono tendenze variabili nel tempo, dovresti considerare la velocità con cui desideri che l'algoritmo si adatti a queste tendenze. Cioè, se lo metti laga 10, ci vogliono 10 'periodi' prima che il treshold dell'algoritmo sia adattato a qualsiasi cambiamento sistematico nella media a lungo termine. Quindi scegli il lagparametro in base al comportamento di tendenza dei tuoi dati e quanto adattivo desideri che l'algoritmo sia.

influence: questo parametro determina l'influenza dei segnali sulla soglia di rilevamento dell'algoritmo. Se posto a 0, i segnali non hanno influenza sulla soglia, in modo tale che i segnali futuri vengano rilevati sulla base di una soglia calcolata con una deviazione media e standard che non è influenzata dai segnali passati. Un altro modo di pensare a questo è che se si mette l'influenza su 0, si assume implicitamente la stazionarietà (cioè, indipendentemente da quanti segnali ci siano, le serie temporali ritornano sempre alla stessa media nel lungo periodo). In caso contrario, è necessario posizionare il parametro influenza tra 0 e 1, a seconda della misura in cui i segnali possono influenzare sistematicamente l'andamento variabile nel tempo dei dati. Ad esempio, se i segnali portano a rottura strutturale della media a lungo termine delle serie temporali, il parametro influenza dovrebbe essere elevato (vicino a 1) in modo che la soglia possa adattarsi rapidamente a questi cambiamenti.

threshold: il parametro di soglia è il numero di deviazioni standard dalla media mobile al di sopra della quale l'algoritmo classificherà un nuovo punto dati come segnale. Ad esempio, se un nuovo punto dati è 4,0 deviazioni standard sopra la media mobile e il parametro di soglia è impostato come 3,5, l'algoritmo identificherà il punto dati come segnale. Questo parametro deve essere impostato in base al numero di segnali previsti. Ad esempio, se i tuoi dati sono normalmente distribuiti, una soglia (o: punteggio z) di 3,5 corrisponde a una probabilità di segnalazione di 0.00047 (da questa tabella), il che implica che ti aspetti un segnale ogni 2128 punti dati (1 / 0.00047). La soglia influenza quindi direttamente la sensibilità dell'algoritmo e quindi anche la frequenza con cui l'algoritmo segnala. Esamina i tuoi dati e determina una soglia ragionevole che emette il segnale dell'algoritmo quando lo desideri (potrebbero essere necessari alcuni tentativi ed errori qui per raggiungere una buona soglia per il tuo scopo).


ATTENZIONE: il codice sopra riportato scorre sempre su tutti i punti dati ogni volta che viene eseguito. Quando si implementa questo codice, assicurarsi di dividere il calcolo del segnale in una funzione separata (senza il loop). Poi, quando un nuovo punto dati arriva, l'aggiornamento filteredY, avgFiltere stdFilteruna volta. Non ricalcolare i segnali per tutti i dati ogni volta che c'è un nuovo punto dati (come nell'esempio sopra), che sarebbe estremamente inefficiente e lento!

Altri modi per modificare l'algoritmo (per potenziali miglioramenti) sono:

  1. Usa la mediana invece della media
  2. Utilizzare una solida misura di scala , come il MAD, anziché la deviazione standard
  3. Usa un margine di segnalazione, quindi il segnale non cambia troppo spesso
  4. Cambia il modo in cui funziona il parametro influenza
  5. Trattare i segnali su e giù in modo diverso (trattamento asimmetrico)
  6. Crea un influenceparametro separato per media e std ( come fatto in questa traduzione di Swift )

Citazioni accademiche (note) a questa risposta StackOverflow:

Altri lavori con l'algoritmo

Altre applicazioni di questo algoritmo

Collegamenti ad altri algoritmi di rilevamento dei picchi


Se usi questa funzione da qualche parte, ti prego di riconoscermi o questa risposta. Se hai domande su questo algoritmo, pubblicale nei commenti qui sotto o contattami su LinkedIn .



Il link a movingstd è interrotto, ma puoi trovarne una descrizione qui
Phylliida,

@reasra Risulta che la funzione non ha bisogno di una deviazione standard mobile dopo la riscrittura. Ora può essere utilizzato con semplici funzioni Matlab integrate :)
Jean-Paul,

1
Sto provando il codice Matlab per alcuni dati dell'accelerometro, ma per qualche ragione il thresholdgrafico diventa solo una linea verde piatta dopo un grande picco fino a 20 nei dati, e rimane così per il resto del grafico ... Se Rimuovo il sike, questo non accade, quindi sembra essere causato dal picco nei dati. Qualche idea di cosa potrebbe succedere? Sono un novizio in Matlab, quindi non riesco a capirlo ...
Magnus W

@BadCash Puoi fornire un esempio (con i dati)? Forse fai la tua domanda qui su SO e dimmi il link?
Jean-Paul,

2
Esistono molti modi per migliorare questo algoritmo, quindi sii creativo (trattamento diverso su / giù; mediana anziché media; std robusto; scrittura del codice come funzione efficiente in termini di memoria; margine di soglia in modo che il segnale non cambi troppo spesso, ecc. .).
Jean-Paul,

41

Ecco l' implementazione Python/ numpydell'algoritmo smoothed z-score (vedi risposta sopra ). Puoi trovare l' essenza qui .

#!/usr/bin/env python
# Implementation of algorithm from https://stackoverflow.com/a/22640362/6029703
import numpy as np
import pylab

def thresholding_algo(y, lag, threshold, influence):
    signals = np.zeros(len(y))
    filteredY = np.array(y)
    avgFilter = [0]*len(y)
    stdFilter = [0]*len(y)
    avgFilter[lag - 1] = np.mean(y[0:lag])
    stdFilter[lag - 1] = np.std(y[0:lag])
    for i in range(lag, len(y)):
        if abs(y[i] - avgFilter[i-1]) > threshold * stdFilter [i-1]:
            if y[i] > avgFilter[i-1]:
                signals[i] = 1
            else:
                signals[i] = -1

            filteredY[i] = influence * y[i] + (1 - influence) * filteredY[i-1]
            avgFilter[i] = np.mean(filteredY[(i-lag+1):i+1])
            stdFilter[i] = np.std(filteredY[(i-lag+1):i+1])
        else:
            signals[i] = 0
            filteredY[i] = y[i]
            avgFilter[i] = np.mean(filteredY[(i-lag+1):i+1])
            stdFilter[i] = np.std(filteredY[(i-lag+1):i+1])

    return dict(signals = np.asarray(signals),
                avgFilter = np.asarray(avgFilter),
                stdFilter = np.asarray(stdFilter))

Di seguito è riportato il test sullo stesso set di dati che produce lo stesso grafico della risposta originale per R/Matlab

# Data
y = np.array([1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1])

# Settings: lag = 30, threshold = 5, influence = 0
lag = 30
threshold = 5
influence = 0

# Run algo with settings from above
result = thresholding_algo(y, lag=lag, threshold=threshold, influence=influence)

# Plot result
pylab.subplot(211)
pylab.plot(np.arange(1, len(y)+1), y)

pylab.plot(np.arange(1, len(y)+1),
           result["avgFilter"], color="cyan", lw=2)

pylab.plot(np.arange(1, len(y)+1),
           result["avgFilter"] + threshold * result["stdFilter"], color="green", lw=2)

pylab.plot(np.arange(1, len(y)+1),
           result["avgFilter"] - threshold * result["stdFilter"], color="green", lw=2)

pylab.subplot(212)
pylab.step(np.arange(1, len(y)+1), result["signals"], color="red", lw=2)
pylab.ylim(-1.5, 1.5)
pylab.show()

Qui "y" è in realtà il segnale e "segnali" è l'insieme di punti dati, ho ragione di capire?
TheTank

1
@TheTank yè l'array di dati in cui si passa, signalsè l' array di output +1o -1che indica per ciascun punto dati y[i]se tale punto dati è un "picco significativo" date le impostazioni utilizzate.
Jean-Paul,

23

Un approccio consiste nel rilevare i picchi in base alla seguente osservazione:

  • Il tempo t è un picco se (y (t)> y (t-1)) && (y (t)> y (t + 1))

Evita i falsi positivi aspettando fino alla fine della tendenza rialzista. Non è esattamente "in tempo reale", nel senso che mancherà il picco di un dt. la sensibilità può essere controllata richiedendo un margine per il confronto. C'è un compromesso tra rilevamento rumoroso e ritardo del rilevamento. È possibile arricchire il modello aggiungendo più parametri:

  • picco if (y (t) - y (t-dt)> m) && (y (t) - y (t + dt)> m)

dove dt e m sono parametri per controllare la sensibilità rispetto al ritardo

Questo è ciò che ottieni con l'algoritmo menzionato: inserisci qui la descrizione dell'immagine

ecco il codice per riprodurre la trama in Python:

import numpy as np
import matplotlib.pyplot as plt
input = np.array([ 1. ,  1. ,  1. ,  1. ,  1. ,  1. ,  1. ,  1.1,  1. ,  0.8,  0.9,
    1. ,  1.2,  0.9,  1. ,  1. ,  1.1,  1.2,  1. ,  1.5,  1. ,  3. ,
    2. ,  5. ,  3. ,  2. ,  1. ,  1. ,  1. ,  0.9,  1. ,  1. ,  3. ,
    2.6,  4. ,  3. ,  3.2,  2. ,  1. ,  1. ,  1. ,  1. ,  1. ])
signal = (input > np.roll(input,1)) & (input > np.roll(input,-1))
plt.plot(input)
plt.plot(signal.nonzero()[0], input[signal], 'ro')
plt.show()

Impostando m = 0.5, puoi ottenere un segnale più pulito con un solo falso positivo: inserisci qui la descrizione dell'immagine


Prima = meglio, quindi tutti i picchi sono significativi. Grazie! Molto bello!
Jean-Paul,

Come potrei cambiare la sensibilità?
Jean-Paul,

Mi vengono in mente due approcci: 1: imposta m su un valore più grande in modo che vengano rilevati solo picchi più grandi. 2: invece di calcolare y (t) - y (t-dt) (e y (t) - y (t + dt)), ti integri da t-dt a t (e da t a t + dt).
aha

2
In base a quali criteri stai respingendo gli altri 7 picchi?
hotpaw2,

4
C'è un problema con i picchi piatti, dal momento che ciò che fai è fondamentalmente il rilevamento di bordi 1-D (come contorto del segnale con [1 0 -1])
ben

18

Nell'elaborazione del segnale, il rilevamento del picco viene spesso eseguito tramite trasformazione wavelet. Fondamentalmente si esegue una trasformazione wavelet discreta sui dati delle serie temporali. Gli incroci di zero nei coefficienti di dettaglio che vengono restituiti corrisponderanno ai picchi nel segnale della serie temporale. Ottieni ampiezze di picco diverse rilevate a diversi livelli di coefficiente di dettaglio, il che ti dà una risoluzione multi-livello.


1
La tua risposta mi ha permesso di questo articolo e questa risposta che mi aiuteranno a costruire un buon algoritmo per la mia implementazione. Grazie!
Jean-Paul,

@cklin Puoi spiegarci come calcolare gli incroci di zero dei coefficienti wavelet, dal momento che non sono sulla stessa scala temporale delle serie storiche originali. Qualche riferimento a questo utilizzo?
OrazioT

11

Abbiamo tentato di utilizzare l'algoritmo smoothed z-score sul nostro set di dati, che si traduce in oversensitivity o underensensivity (a seconda di come sono sintonizzati i parametri), con poca via di mezzo. Nel segnale del traffico del nostro sito, abbiamo osservato una linea di base a bassa frequenza che rappresenta il ciclo giornaliero e anche con i migliori parametri possibili (mostrati di seguito), si è ancora interrotta soprattutto il 4 ° giorno perché la maggior parte dei punti dati sono riconosciuti come anomalie .

Basandoci sull'algoritmo originale z-score, abbiamo trovato un modo per risolvere questo problema con il filtro inverso. I dettagli dell'algoritmo modificato e la sua applicazione sull'attribuzione del traffico commerciale TV sono pubblicati sul blog del nostro team .

inserisci qui la descrizione dell'immagine


Fantastico vedere che l'algoritmo è stato un punto di partenza per la tua versione più avanzata. I tuoi dati hanno uno schema molto particolare, quindi avrebbe davvero più senso rimuovere prima lo schema usando qualche altra tecnica e quindi applicare l'algo sui residui. In alternativa, potresti voler utilizzare una finestra centrata anziché una in ritardo per calcolare la media / st.dev. Un altro commento: la tua soluzione si sposta da destra a sinistra per identificare i picchi, ma ciò non è possibile nelle applicazioni in tempo reale (ecco perché l'algo originale è così semplicistico, perché le informazioni future sono inaccessibili).
Jean-Paul,

10

Nella topologia computazionale l'idea di omologia persistente porta a una soluzione efficiente - veloce come l'ordinamento dei numeri -. Non rileva solo i picchi, ma quantifica il "significato" dei picchi in modo naturale che consente di selezionare i picchi significativi per te.

Riepilogo algoritmo. In un'impostazione monodimensionale (serie temporali, segnale con valori reali) l'algoritmo può essere facilmente descritto dalla figura seguente:

Picchi più persistenti

Pensa al grafico delle funzioni (o al suo set di sotto-livelli) come un paesaggio e considera un livello dell'acqua in diminuzione a partire dal livello infinito (o 1,8 in questa immagine). Mentre il livello diminuisce, alle massime isole locali spuntano. Ai minimi locali queste isole si fondono insieme. Un dettaglio di questa idea è che l'isola che è apparsa più tardi nel tempo è fusa nell'isola che è più vecchia. La "persistenza" di un'isola è il suo tempo di nascita meno il suo tempo di morte. Le lunghezze delle barre blu rappresentano la persistenza, che è il "significato" sopra menzionato di un picco.

Efficienza. Non è troppo difficile trovare un'implementazione che funzioni in tempo lineare - in realtà è un singolo, semplice ciclo - dopo che i valori della funzione sono stati ordinati. Quindi questa implementazione dovrebbe essere rapida nella pratica ed anche facilmente implementabile.

Riferimenti. Un resoconto dell'intera storia e riferimenti alla motivazione dell'omologia persistente (un campo della topologia algebrica computatioale) può essere trovato qui: https://www.sthu.org/blog/13-perstopology-peakdetection/index.html


Questo algoritmo è molto più veloce e preciso rispetto, ad esempio, a scipy.signal.find_peaks. Per una serie "reale" con 1053896 punti dati, ha rilevato 137516 picchi (13%). L'ordine dei picchi (il più significativo per primo) consente di estrarre i picchi più significativi. Fornisce l'inizio, il picco e la fine di ciascun picco. Funziona bene con dati rumorosi.
Vin

Per dati in tempo reale si intende un cosiddetto algoritmo online, in cui i punti dati vengono ricevuti di volta in volta. Il significato di un picco potrebbe essere determinato da valori futuri. Sarebbe bello estendere l'algoritmo per diventare online modificando i risultati passati senza sacrificare troppo la complessità del tempo.
S. Huber,

9

Trovato un altro algoritmo di GH Palshikar in Simple Algorithms for Peak Detection in Time-Series .

L'algoritmo va così:

algorithm peak1 // one peak detection algorithms that uses peak function S1 

input T = x1, x2, …, xN, N // input time-series of N points 
input k // window size around the peak 
input h // typically 1 <= h <= 3 
output O // set of peaks detected in T 

begin 
O = empty set // initially empty 

    for (i = 1; i < n; i++) do
        // compute peak function value for each of the N points in T 
        a[i] = S1(k,i,xi,T); 
    end for 

    Compute the mean m' and standard deviation s' of all positive values in array a; 

    for (i = 1; i < n; i++) do // remove local peaks which are “small” in global context 
        if (a[i] > 0 && (a[i] – m') >( h * s')) then O = O + {xi}; 
        end if 
    end for 

    Order peaks in O in terms of increasing index in T 

    // retain only one peak out of any set of peaks within distance k of each other 

    for every adjacent pair of peaks xi and xj in O do 
        if |j – i| <= k then remove the smaller value of {xi, xj} from O 
        end if 
    end for 
end

vantaggi

  • L'articolo fornisce 5 diversi algoritmi per il rilevamento dei picchi
  • Gli algoritmi funzionano sui dati grezzi delle serie temporali (non è necessario alcun livellamento)

svantaggi

  • Difficile da determinare ke in hanticipo
  • I picchi non possono essere piatti (come il terzo picco nei miei dati di test)

Esempio:

inserisci qui la descrizione dell'immagine


Documento davvero interessante. S4 sembra una funzione migliore da usare a suo avviso. Ma ancora più importante è chiarire quando k <i <Nk non è vero. Come definirebbe la funzione S1 (S2, ..) per i = 0 semplicemente non ho diviso per 2 e ignorato il primo operando e per ogni altro ho incluso entrambi gli operandi ma per i <= k c'erano meno operandi a sinistra poi a destra
daniels_pa il

8

Ecco un'implementazione dell'algoritmo Smoothed z-score (sopra) in Golang. Presuppone una porzione di []int16(campioni PCM a 16 bit). Puoi trovare un riassunto qui .

/*
Settings (the ones below are examples: choose what is best for your data)
set lag to 5;          # lag 5 for the smoothing functions
set threshold to 3.5;  # 3.5 standard deviations for signal
set influence to 0.5;  # between 0 and 1, where 1 is normal influence, 0.5 is half
*/

// ZScore on 16bit WAV samples
func ZScore(samples []int16, lag int, threshold float64, influence float64) (signals []int16) {
    //lag := 20
    //threshold := 3.5
    //influence := 0.5

    signals = make([]int16, len(samples))
    filteredY := make([]int16, len(samples))
    for i, sample := range samples[0:lag] {
        filteredY[i] = sample
    }
    avgFilter := make([]int16, len(samples))
    stdFilter := make([]int16, len(samples))

    avgFilter[lag] = Average(samples[0:lag])
    stdFilter[lag] = Std(samples[0:lag])

    for i := lag + 1; i < len(samples); i++ {

        f := float64(samples[i])

        if float64(Abs(samples[i]-avgFilter[i-1])) > threshold*float64(stdFilter[i-1]) {
            if samples[i] > avgFilter[i-1] {
                signals[i] = 1
            } else {
                signals[i] = -1
            }
            filteredY[i] = int16(influence*f + (1-influence)*float64(filteredY[i-1]))
            avgFilter[i] = Average(filteredY[(i - lag):i])
            stdFilter[i] = Std(filteredY[(i - lag):i])
        } else {
            signals[i] = 0
            filteredY[i] = samples[i]
            avgFilter[i] = Average(filteredY[(i - lag):i])
            stdFilter[i] = Std(filteredY[(i - lag):i])
        }
    }

    return
}

// Average a chunk of values
func Average(chunk []int16) (avg int16) {
    var sum int64
    for _, sample := range chunk {
        if sample < 0 {
            sample *= -1
        }
        sum += int64(sample)
    }
    return int16(sum / int64(len(chunk)))
}

@ Jean-Paul Non sono del tutto sicuro che tutto sia corretto, quindi potrebbero esserci dei bug.
Xeoncross,

1
Hai provato a replicare l'output di esempio demo da Matlab / R? Questa dovrebbe essere una buona conferma della qualità.
Jean-Paul,

7

Ecco un'implementazione C ++ dell'algoritmo smoothed z-score da questa risposta

std::vector<int> smoothedZScore(std::vector<float> input)
{   
    //lag 5 for the smoothing functions
    int lag = 5;
    //3.5 standard deviations for signal
    float threshold = 3.5;
    //between 0 and 1, where 1 is normal influence, 0.5 is half
    float influence = .5;

    if (input.size() <= lag + 2)
    {
        std::vector<int> emptyVec;
        return emptyVec;
    }

    //Initialise variables
    std::vector<int> signals(input.size(), 0.0);
    std::vector<float> filteredY(input.size(), 0.0);
    std::vector<float> avgFilter(input.size(), 0.0);
    std::vector<float> stdFilter(input.size(), 0.0);
    std::vector<float> subVecStart(input.begin(), input.begin() + lag);
    avgFilter[lag] = mean(subVecStart);
    stdFilter[lag] = stdDev(subVecStart);

    for (size_t i = lag + 1; i < input.size(); i++)
    {
        if (std::abs(input[i] - avgFilter[i - 1]) > threshold * stdFilter[i - 1])
        {
            if (input[i] > avgFilter[i - 1])
            {
                signals[i] = 1; //# Positive signal
            }
            else
            {
                signals[i] = -1; //# Negative signal
            }
            //Make influence lower
            filteredY[i] = influence* input[i] + (1 - influence) * filteredY[i - 1];
        }
        else
        {
            signals[i] = 0; //# No signal
            filteredY[i] = input[i];
        }
        //Adjust the filters
        std::vector<float> subVec(filteredY.begin() + i - lag, filteredY.begin() + i);
        avgFilter[i] = mean(subVec);
        stdFilter[i] = stdDev(subVec);
    }
    return signals;
}

2
Avvertenza: questa implementazione in realtà non fornisce un metodo per calcolare la media e la deviazione standard. Per C ++ 11, un metodo semplice può essere trovato qui: stackoverflow.com/a/12405793/3250829
rayryeng

6

Questo problema è simile a quello riscontrato in un corso di sistemi ibridi / integrati, ma era correlato al rilevamento di guasti quando l'ingresso da un sensore è rumoroso. Abbiamo usato un filtro Kalman per stimare / prevedere lo stato nascosto del sistema, quindi abbiamo usato l'analisi statistica per determinare la probabilità che si fosse verificato un errore . Lavoravamo con sistemi lineari, ma esistono varianti non lineari. Ricordo che l'approccio era sorprendentemente adattivo, ma richiedeva un modello della dinamica del sistema.


Il filtro Kalman è interessante, ma non riesco a trovare un algoritmo applicabile per il mio scopo. Tuttavia apprezzo molto la risposta e esaminerò alcuni documenti di rilevamento dei picchi come questo per vedere se posso imparare da uno qualsiasi degli algoritmi. Grazie!
Jean-Paul,

6

Implementazione C ++

#include <iostream>
#include <vector>
#include <algorithm>
#include <unordered_map>
#include <cmath>
#include <iterator>
#include <numeric>

using namespace std;

typedef long double ld;
typedef unsigned int uint;
typedef std::vector<ld>::iterator vec_iter_ld;

/**
 * Overriding the ostream operator for pretty printing vectors.
 */
template<typename T>
std::ostream &operator<<(std::ostream &os, std::vector<T> vec) {
    os << "[";
    if (vec.size() != 0) {
        std::copy(vec.begin(), vec.end() - 1, std::ostream_iterator<T>(os, " "));
        os << vec.back();
    }
    os << "]";
    return os;
}

/**
 * This class calculates mean and standard deviation of a subvector.
 * This is basically stats computation of a subvector of a window size qual to "lag".
 */
class VectorStats {
public:
    /**
     * Constructor for VectorStats class.
     *
     * @param start - This is the iterator position of the start of the window,
     * @param end   - This is the iterator position of the end of the window,
     */
    VectorStats(vec_iter_ld start, vec_iter_ld end) {
        this->start = start;
        this->end = end;
        this->compute();
    }

    /**
     * This method calculates the mean and standard deviation using STL function.
     * This is the Two-Pass implementation of the Mean & Variance calculation.
     */
    void compute() {
        ld sum = std::accumulate(start, end, 0.0);
        uint slice_size = std::distance(start, end);
        ld mean = sum / slice_size;
        std::vector<ld> diff(slice_size);
        std::transform(start, end, diff.begin(), [mean](ld x) { return x - mean; });
        ld sq_sum = std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.0);
        ld std_dev = std::sqrt(sq_sum / slice_size);

        this->m1 = mean;
        this->m2 = std_dev;
    }

    ld mean() {
        return m1;
    }

    ld standard_deviation() {
        return m2;
    }

private:
    vec_iter_ld start;
    vec_iter_ld end;
    ld m1;
    ld m2;
};

/**
 * This is the implementation of the Smoothed Z-Score Algorithm.
 * This is direction translation of https://stackoverflow.com/a/22640362/1461896.
 *
 * @param input - input signal
 * @param lag - the lag of the moving window
 * @param threshold - the z-score at which the algorithm signals
 * @param influence - the influence (between 0 and 1) of new signals on the mean and standard deviation
 * @return a hashmap containing the filtered signal and corresponding mean and standard deviation.
 */
unordered_map<string, vector<ld>> z_score_thresholding(vector<ld> input, int lag, ld threshold, ld influence) {
    unordered_map<string, vector<ld>> output;

    uint n = (uint) input.size();
    vector<ld> signals(input.size());
    vector<ld> filtered_input(input.begin(), input.end());
    vector<ld> filtered_mean(input.size());
    vector<ld> filtered_stddev(input.size());

    VectorStats lag_subvector_stats(input.begin(), input.begin() + lag);
    filtered_mean[lag - 1] = lag_subvector_stats.mean();
    filtered_stddev[lag - 1] = lag_subvector_stats.standard_deviation();

    for (int i = lag; i < n; i++) {
        if (abs(input[i] - filtered_mean[i - 1]) > threshold * filtered_stddev[i - 1]) {
            signals[i] = (input[i] > filtered_mean[i - 1]) ? 1.0 : -1.0;
            filtered_input[i] = influence * input[i] + (1 - influence) * filtered_input[i - 1];
        } else {
            signals[i] = 0.0;
            filtered_input[i] = input[i];
        }
        VectorStats lag_subvector_stats(filtered_input.begin() + (i - lag), filtered_input.begin() + i);
        filtered_mean[i] = lag_subvector_stats.mean();
        filtered_stddev[i] = lag_subvector_stats.standard_deviation();
    }

    output["signals"] = signals;
    output["filtered_mean"] = filtered_mean;
    output["filtered_stddev"] = filtered_stddev;

    return output;
};

int main() {
    vector<ld> input = {1.0, 1.0, 1.1, 1.0, 0.9, 1.0, 1.0, 1.1, 1.0, 0.9, 1.0, 1.1, 1.0, 1.0, 0.9, 1.0, 1.0, 1.1, 1.0,
                        1.0, 1.0, 1.0, 1.1, 0.9, 1.0, 1.1, 1.0, 1.0, 0.9, 1.0, 1.1, 1.0, 1.0, 1.1, 1.0, 0.8, 0.9, 1.0,
                        1.2, 0.9, 1.0, 1.0, 1.1, 1.2, 1.0, 1.5, 1.0, 3.0, 2.0, 5.0, 3.0, 2.0, 1.0, 1.0, 1.0, 0.9, 1.0,
                        1.0, 3.0, 2.6, 4.0, 3.0, 3.2, 2.0, 1.0, 1.0, 0.8, 4.0, 4.0, 2.0, 2.5, 1.0, 1.0, 1.0};

    int lag = 30;
    ld threshold = 5.0;
    ld influence = 0.0;
    unordered_map<string, vector<ld>> output = z_score_thresholding(input, lag, threshold, influence);
    cout << output["signals"] << endl;
}

6

In seguito alla soluzione proposta da @ Jean-Paul, ho implementato il suo algoritmo in C #

public class ZScoreOutput
{
    public List<double> input;
    public List<int> signals;
    public List<double> avgFilter;
    public List<double> filtered_stddev;
}

public static class ZScore
{
    public static ZScoreOutput StartAlgo(List<double> input, int lag, double threshold, double influence)
    {
        // init variables!
        int[] signals = new int[input.Count];
        double[] filteredY = new List<double>(input).ToArray();
        double[] avgFilter = new double[input.Count];
        double[] stdFilter = new double[input.Count];

        var initialWindow = new List<double>(filteredY).Skip(0).Take(lag).ToList();

        avgFilter[lag - 1] = Mean(initialWindow);
        stdFilter[lag - 1] = StdDev(initialWindow);

        for (int i = lag; i < input.Count; i++)
        {
            if (Math.Abs(input[i] - avgFilter[i - 1]) > threshold * stdFilter[i - 1])
            {
                signals[i] = (input[i] > avgFilter[i - 1]) ? 1 : -1;
                filteredY[i] = influence * input[i] + (1 - influence) * filteredY[i - 1];
            }
            else
            {
                signals[i] = 0;
                filteredY[i] = input[i];
            }

            // Update rolling average and deviation
            var slidingWindow = new List<double>(filteredY).Skip(i - lag).Take(lag+1).ToList();

            var tmpMean = Mean(slidingWindow);
            var tmpStdDev = StdDev(slidingWindow);

            avgFilter[i] = Mean(slidingWindow);
            stdFilter[i] = StdDev(slidingWindow);
        }

        // Copy to convenience class 
        var result = new ZScoreOutput();
        result.input = input;
        result.avgFilter       = new List<double>(avgFilter);
        result.signals         = new List<int>(signals);
        result.filtered_stddev = new List<double>(stdFilter);

        return result;
    }

    private static double Mean(List<double> list)
    {
        // Simple helper function! 
        return list.Average();
    }

    private static double StdDev(List<double> values)
    {
        double ret = 0;
        if (values.Count() > 0)
        {
            double avg = values.Average();
            double sum = values.Sum(d => Math.Pow(d - avg, 2));
            ret = Math.Sqrt((sum) / (values.Count() - 1));
        }
        return ret;
    }
}

Esempio di utilizzo:

var input = new List<double> {1.0, 1.0, 1.1, 1.0, 0.9, 1.0, 1.0, 1.1, 1.0, 0.9, 1.0,
    1.1, 1.0, 1.0, 0.9, 1.0, 1.0, 1.1, 1.0, 1.0, 1.0, 1.0, 1.1, 0.9, 1.0, 1.1, 1.0, 1.0, 0.9,
    1.0, 1.1, 1.0, 1.0, 1.1, 1.0, 0.8, 0.9, 1.0, 1.2, 0.9, 1.0, 1.0, 1.1, 1.2, 1.0, 1.5, 1.0,
    3.0, 2.0, 5.0, 3.0, 2.0, 1.0, 1.0, 1.0, 0.9, 1.0, 1.0, 3.0, 2.6, 4.0, 3.0, 3.2, 2.0, 1.0,
    1.0, 0.8, 4.0, 4.0, 2.0, 2.5, 1.0, 1.0, 1.0};

int lag = 30;
double threshold = 5.0;
double influence = 0.0;

var output = ZScore.StartAlgo(input, lag, threshold, influence);

1
Ciao @ Jean-Paul. Saluti. Sì, ho testato l'output con la tua versione R per assicurarmi che corrisponda. Grazie ancora per la soluzione a questo problema.
Ocean Airdrop,

Ciao, penso che ci sia un errore in quel codice, nel metodo StdDev prendi valori.Count () - 1, dovresti fare affidamento su -1? Penso che vorresti il ​​numero di elementi ed è quello che ottieni da valori. Conti ().
Viktor,

1
Hmm .. Buon posto. Sebbene originariamente portassi l'algoritmo su C #, non ho mai finito per usarlo. Probabilmente sostituirei l'intera funzione con una chiamata alla libreria nuget MathNet. "Install-Package MathNet.Numerics" Dispone di funzioni predefinite per PopulationStandardDeviation () e StandardDeviation (); per esempio. var popolazioneStdDev = new List <double> (1,2,3,4) .PopulationStandardDeviation (); var sampleStdDev = new List <double> (1,2,3,4) .StandardDeviation ();
Ocean Airdrop,

6

Ecco un'implementazione C del punteggio Smoothed Z di @ Jean-Paul per il microcontrollore Arduino utilizzato per eseguire letture dell'accelerometro e decidere se la direzione di un impatto è venuta da sinistra o da destra. Questo funziona davvero bene poiché questo dispositivo restituisce un segnale rimbalzato. Ecco questo input per questo algoritmo di rilevamento dei picchi dal dispositivo, che mostra un impatto da destra seguito da un impatto da sinistra. Puoi vedere il picco iniziale quindi l'oscillazione del sensore.

inserisci qui la descrizione dell'immagine

#include <stdio.h>
#include <math.h>
#include <string.h>


#define SAMPLE_LENGTH 1000

float stddev(float data[], int len);
float mean(float data[], int len);
void thresholding(float y[], int signals[], int lag, float threshold, float influence);


void thresholding(float y[], int signals[], int lag, float threshold, float influence) {
    memset(signals, 0, sizeof(float) * SAMPLE_LENGTH);
    float filteredY[SAMPLE_LENGTH];
    memcpy(filteredY, y, sizeof(float) * SAMPLE_LENGTH);
    float avgFilter[SAMPLE_LENGTH];
    float stdFilter[SAMPLE_LENGTH];

    avgFilter[lag - 1] = mean(y, lag);
    stdFilter[lag - 1] = stddev(y, lag);

    for (int i = lag; i < SAMPLE_LENGTH; i++) {
        if (fabsf(y[i] - avgFilter[i-1]) > threshold * stdFilter[i-1]) {
            if (y[i] > avgFilter[i-1]) {
                signals[i] = 1;
            } else {
                signals[i] = -1;
            }
            filteredY[i] = influence * y[i] + (1 - influence) * filteredY[i-1];
        } else {
            signals[i] = 0;
        }
        avgFilter[i] = mean(filteredY + i-lag, lag);
        stdFilter[i] = stddev(filteredY + i-lag, lag);
    }
}

float mean(float data[], int len) {
    float sum = 0.0, mean = 0.0;

    int i;
    for(i=0; i<len; ++i) {
        sum += data[i];
    }

    mean = sum/len;
    return mean;


}

float stddev(float data[], int len) {
    float the_mean = mean(data, len);
    float standardDeviation = 0.0;

    int i;
    for(i=0; i<len; ++i) {
        standardDeviation += pow(data[i] - the_mean, 2);
    }

    return sqrt(standardDeviation/len);
}

int main() {
    printf("Hello, World!\n");
    int lag = 100;
    float threshold = 5;
    float influence = 0;
    float y[]=  {1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
  ....
1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1}

    int signal[SAMPLE_LENGTH];

    thresholding(y, signal,  lag, threshold, influence);

    return 0;
}

Il suo è il risultato con influenza = 0

inserisci qui la descrizione dell'immagine

Non eccezionale ma qui con influenza = 1

inserisci qui la descrizione dell'immagine

che è molto buono.


5

Ecco una vera implementazione Java basata sulla risposta Groovy pubblicata in precedenza. (So ​​che ci sono già implementazioni Groovy e Kotlin pubblicate, ma per qualcuno come me che ha fatto solo Java, è una vera seccatura capire come convertire tra altre lingue e Java).

(I risultati corrispondono ai grafici di altre persone)

Implementazione dell'algoritmo

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;

import org.apache.commons.math3.stat.descriptive.SummaryStatistics;

public class SignalDetector {

    public HashMap<String, List> analyzeDataForSignals(List<Double> data, int lag, Double threshold, Double influence) {

        // init stats instance
        SummaryStatistics stats = new SummaryStatistics();

        // the results (peaks, 1 or -1) of our algorithm
        List<Integer> signals = new ArrayList<Integer>(Collections.nCopies(data.size(), 0));

        // filter out the signals (peaks) from our original list (using influence arg)
        List<Double> filteredData = new ArrayList<Double>(data);

        // the current average of the rolling window
        List<Double> avgFilter = new ArrayList<Double>(Collections.nCopies(data.size(), 0.0d));

        // the current standard deviation of the rolling window
        List<Double> stdFilter = new ArrayList<Double>(Collections.nCopies(data.size(), 0.0d));

        // init avgFilter and stdFilter
        for (int i = 0; i < lag; i++) {
            stats.addValue(data.get(i));
        }
        avgFilter.set(lag - 1, stats.getMean());
        stdFilter.set(lag - 1, Math.sqrt(stats.getPopulationVariance())); // getStandardDeviation() uses sample variance
        stats.clear();

        // loop input starting at end of rolling window
        for (int i = lag; i < data.size(); i++) {

            // if the distance between the current value and average is enough standard deviations (threshold) away
            if (Math.abs((data.get(i) - avgFilter.get(i - 1))) > threshold * stdFilter.get(i - 1)) {

                // this is a signal (i.e. peak), determine if it is a positive or negative signal
                if (data.get(i) > avgFilter.get(i - 1)) {
                    signals.set(i, 1);
                } else {
                    signals.set(i, -1);
                }

                // filter this signal out using influence
                filteredData.set(i, (influence * data.get(i)) + ((1 - influence) * filteredData.get(i - 1)));
            } else {
                // ensure this signal remains a zero
                signals.set(i, 0);
                // ensure this value is not filtered
                filteredData.set(i, data.get(i));
            }

            // update rolling average and deviation
            for (int j = i - lag; j < i; j++) {
                stats.addValue(filteredData.get(j));
            }
            avgFilter.set(i, stats.getMean());
            stdFilter.set(i, Math.sqrt(stats.getPopulationVariance()));
            stats.clear();
        }

        HashMap<String, List> returnMap = new HashMap<String, List>();
        returnMap.put("signals", signals);
        returnMap.put("filteredData", filteredData);
        returnMap.put("avgFilter", avgFilter);
        returnMap.put("stdFilter", stdFilter);

        return returnMap;

    } // end
}

Metodo principale

import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;

public class Main {

    public static void main(String[] args) throws Exception {
        DecimalFormat df = new DecimalFormat("#0.000");

        ArrayList<Double> data = new ArrayList<Double>(Arrays.asList(1d, 1d, 1.1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 0.9d, 1d,
                1.1d, 1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 1d, 1d, 1d, 1.1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d,
                1.1d, 1d, 0.8d, 0.9d, 1d, 1.2d, 0.9d, 1d, 1d, 1.1d, 1.2d, 1d, 1.5d, 1d, 3d, 2d, 5d, 3d, 2d, 1d, 1d, 1d,
                0.9d, 1d, 1d, 3d, 2.6d, 4d, 3d, 3.2d, 2d, 1d, 1d, 0.8d, 4d, 4d, 2d, 2.5d, 1d, 1d, 1d));

        SignalDetector signalDetector = new SignalDetector();
        int lag = 30;
        double threshold = 5;
        double influence = 0;

        HashMap<String, List> resultsMap = signalDetector.analyzeDataForSignals(data, lag, threshold, influence);
        // print algorithm params
        System.out.println("lag: " + lag + "\t\tthreshold: " + threshold + "\t\tinfluence: " + influence);

        System.out.println("Data size: " + data.size());
        System.out.println("Signals size: " + resultsMap.get("signals").size());

        // print data
        System.out.print("Data:\t\t");
        for (double d : data) {
            System.out.print(df.format(d) + "\t");
        }
        System.out.println();

        // print signals
        System.out.print("Signals:\t");
        List<Integer> signalsList = resultsMap.get("signals");
        for (int i : signalsList) {
            System.out.print(df.format(i) + "\t");
        }
        System.out.println();

        // print filtered data
        System.out.print("Filtered Data:\t");
        List<Double> filteredDataList = resultsMap.get("filteredData");
        for (double d : filteredDataList) {
            System.out.print(df.format(d) + "\t");
        }
        System.out.println();

        // print running average
        System.out.print("Avg Filter:\t");
        List<Double> avgFilterList = resultsMap.get("avgFilter");
        for (double d : avgFilterList) {
            System.out.print(df.format(d) + "\t");
        }
        System.out.println();

        // print running std
        System.out.print("Std filter:\t");
        List<Double> stdFilterList = resultsMap.get("stdFilter");
        for (double d : stdFilterList) {
            System.out.print(df.format(d) + "\t");
        }
        System.out.println();

        System.out.println();
        for (int i = 0; i < signalsList.size(); i++) {
            if (signalsList.get(i) != 0) {
                System.out.println("Point " + i + " gave signal " + signalsList.get(i));
            }
        }
    }
}

risultati

lag: 30     threshold: 5.0      influence: 0.0
Data size: 74
Signals size: 74
Data:           1.000   1.000   1.100   1.000   0.900   1.000   1.000   1.100   1.000   0.900   1.000   1.100   1.000   1.000   0.900   1.000   1.000   1.100   1.000   1.000   1.000   1.000   1.100   0.900   1.000   1.100   1.000   1.000   0.900   1.000   1.100   1.000   1.000   1.100   1.000   0.800   0.900   1.000   1.200   0.900   1.000   1.000   1.100   1.200   1.000   1.500   1.000   3.000   2.000   5.000   3.000   2.000   1.000   1.000   1.000   0.900   1.000   1.000   3.000   2.600   4.000   3.000   3.200   2.000   1.000   1.000   0.800   4.000   4.000   2.000   2.500   1.000   1.000   1.000   
Signals:        0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000   0.000   1.000   1.000   1.000   1.000   1.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000   1.000   1.000   1.000   1.000   1.000   0.000   0.000   0.000   1.000   1.000   1.000   1.000   0.000   0.000   0.000   
Filtered Data:  1.000   1.000   1.100   1.000   0.900   1.000   1.000   1.100   1.000   0.900   1.000   1.100   1.000   1.000   0.900   1.000   1.000   1.100   1.000   1.000   1.000   1.000   1.100   0.900   1.000   1.100   1.000   1.000   0.900   1.000   1.100   1.000   1.000   1.100   1.000   0.800   0.900   1.000   1.200   0.900   1.000   1.000   1.100   1.200   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   0.900   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   0.800   0.800   0.800   0.800   0.800   1.000   1.000   1.000   
Avg Filter:     0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   1.003   1.003   1.007   1.007   1.003   1.007   1.010   1.003   1.000   0.997   1.003   1.003   1.003   1.000   1.003   1.010   1.013   1.013   1.013   1.010   1.010   1.010   1.010   1.010   1.007   1.010   1.010   1.003   1.003   1.003   1.007   1.007   1.003   1.003   1.003   1.000   1.000   1.007   1.003   0.997   0.983   0.980   0.973   0.973   0.970   
Std filter:     0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.060   0.060   0.063   0.063   0.060   0.063   0.060   0.071   0.073   0.071   0.080   0.080   0.080   0.077   0.080   0.087   0.085   0.085   0.085   0.083   0.083   0.083   0.083   0.083   0.081   0.079   0.079   0.080   0.080   0.080   0.077   0.077   0.075   0.075   0.075   0.073   0.073   0.063   0.071   0.080   0.078   0.083   0.089   0.089   0.086   

Point 45 gave signal 1
Point 47 gave signal 1
Point 48 gave signal 1
Point 49 gave signal 1
Point 50 gave signal 1
Point 51 gave signal 1
Point 58 gave signal 1
Point 59 gave signal 1
Point 60 gave signal 1
Point 61 gave signal 1
Point 62 gave signal 1
Point 63 gave signal 1
Point 67 gave signal 1
Point 68 gave signal 1
Point 69 gave signal 1
Point 70 gave signal 1

Grafici che mostrano dati e risultati dell'esecuzione di Java


5

Appendice 1 alla risposta originale: Matlabe Rtraduzioni

Codice Matlab

function [signals,avgFilter,stdFilter] = ThresholdingAlgo(y,lag,threshold,influence)
% Initialise signal results
signals = zeros(length(y),1);
% Initialise filtered series
filteredY = y(1:lag+1);
% Initialise filters
avgFilter(lag+1,1) = mean(y(1:lag+1));
stdFilter(lag+1,1) = std(y(1:lag+1));
% Loop over all datapoints y(lag+2),...,y(t)
for i=lag+2:length(y)
    % If new value is a specified number of deviations away
    if abs(y(i)-avgFilter(i-1)) > threshold*stdFilter(i-1)
        if y(i) > avgFilter(i-1)
            % Positive signal
            signals(i) = 1;
        else
            % Negative signal
            signals(i) = -1;
        end
        % Make influence lower
        filteredY(i) = influence*y(i)+(1-influence)*filteredY(i-1);
    else
        % No signal
        signals(i) = 0;
        filteredY(i) = y(i);
    end
    % Adjust the filters
    avgFilter(i) = mean(filteredY(i-lag:i));
    stdFilter(i) = std(filteredY(i-lag:i));
end
% Done, now return results
end

Esempio:

% Data
y = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1,...
    1 1 1.1 0.9 1 1.1 1 1 0.9 1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1,...
    1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1,...
    1 3 2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

% Settings
lag = 30;
threshold = 5;
influence = 0;

% Get results
[signals,avg,dev] = ThresholdingAlgo(y,lag,threshold,influence);

figure; subplot(2,1,1); hold on;
x = 1:length(y); ix = lag+1:length(y);
area(x(ix),avg(ix)+threshold*dev(ix),'FaceColor',[0.9 0.9 0.9],'EdgeColor','none');
area(x(ix),avg(ix)-threshold*dev(ix),'FaceColor',[1 1 1],'EdgeColor','none');
plot(x(ix),avg(ix),'LineWidth',1,'Color','cyan','LineWidth',1.5);
plot(x(ix),avg(ix)+threshold*dev(ix),'LineWidth',1,'Color','green','LineWidth',1.5);
plot(x(ix),avg(ix)-threshold*dev(ix),'LineWidth',1,'Color','green','LineWidth',1.5);
plot(1:length(y),y,'b');
subplot(2,1,2);
stairs(signals,'r','LineWidth',1.5); ylim([-1.5 1.5]);

Codice R.

ThresholdingAlgo <- function(y,lag,threshold,influence) {
  signals <- rep(0,length(y))
  filteredY <- y[0:lag]
  avgFilter <- NULL
  stdFilter <- NULL
  avgFilter[lag] <- mean(y[0:lag], na.rm=TRUE)
  stdFilter[lag] <- sd(y[0:lag], na.rm=TRUE)
  for (i in (lag+1):length(y)){
    if (abs(y[i]-avgFilter[i-1]) > threshold*stdFilter[i-1]) {
      if (y[i] > avgFilter[i-1]) {
        signals[i] <- 1;
      } else {
        signals[i] <- -1;
      }
      filteredY[i] <- influence*y[i]+(1-influence)*filteredY[i-1]
    } else {
      signals[i] <- 0
      filteredY[i] <- y[i]
    }
    avgFilter[i] <- mean(filteredY[(i-lag):i], na.rm=TRUE)
    stdFilter[i] <- sd(filteredY[(i-lag):i], na.rm=TRUE)
  }
  return(list("signals"=signals,"avgFilter"=avgFilter,"stdFilter"=stdFilter))
}

Esempio:

# Data
y <- c(1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1)

lag       <- 30
threshold <- 5
influence <- 0

# Run algo with lag = 30, threshold = 5, influence = 0
result <- ThresholdingAlgo(y,lag,threshold,influence)

# Plot result
par(mfrow = c(2,1),oma = c(2,2,0,0) + 0.1,mar = c(0,0,2,1) + 0.2)
plot(1:length(y),y,type="l",ylab="",xlab="") 
lines(1:length(y),result$avgFilter,type="l",col="cyan",lwd=2)
lines(1:length(y),result$avgFilter+threshold*result$stdFilter,type="l",col="green",lwd=2)
lines(1:length(y),result$avgFilter-threshold*result$stdFilter,type="l",col="green",lwd=2)
plot(result$signals,type="S",col="red",ylab="",xlab="",ylim=c(-1.5,1.5),lwd=2)

Questo codice (entrambe le lingue) produrrà il seguente risultato per i dati della domanda originale:

Esempio di soglia dal codice Matlab


Appendice 2 alla risposta originale: Matlabcodice dimostrativo

(fai clic per creare i dati)

Demlab di Matlab

function [] = RobustThresholdingDemo()

%% SPECIFICATIONS
lag         = 5;       % lag for the smoothing
threshold   = 3.5;     % number of st.dev. away from the mean to signal
influence   = 0.3;     % when signal: how much influence for new data? (between 0 and 1)
                       % 1 is normal influence, 0.5 is half      
%% START DEMO
DemoScreen(30,lag,threshold,influence);

end

function [signals,avgFilter,stdFilter] = ThresholdingAlgo(y,lag,threshold,influence)
signals = zeros(length(y),1);
filteredY = y(1:lag+1);
avgFilter(lag+1,1) = mean(y(1:lag+1));
stdFilter(lag+1,1) = std(y(1:lag+1));
for i=lag+2:length(y)
    if abs(y(i)-avgFilter(i-1)) > threshold*stdFilter(i-1)
        if y(i) > avgFilter(i-1)
            signals(i) = 1;
        else
            signals(i) = -1;
        end
        filteredY(i) = influence*y(i)+(1-influence)*filteredY(i-1);
    else
        signals(i) = 0;
        filteredY(i) = y(i);
    end
    avgFilter(i) = mean(filteredY(i-lag:i));
    stdFilter(i) = std(filteredY(i-lag:i));
end
end

% Demo screen function
function [] = DemoScreen(n,lag,threshold,influence)
figure('Position',[200 100,1000,500]);
subplot(2,1,1);
title(sprintf(['Draw data points (%.0f max)      [settings: lag = %.0f, '...
    'threshold = %.2f, influence = %.2f]'],n,lag,threshold,influence));
ylim([0 5]); xlim([0 50]);
H = gca; subplot(2,1,1);
set(H, 'YLimMode', 'manual'); set(H, 'XLimMode', 'manual');
set(H, 'YLim', get(H,'YLim')); set(H, 'XLim', get(H,'XLim'));
xg = []; yg = [];
for i=1:n
    try
        [xi,yi] = ginput(1);
    catch
        return;
    end
    xg = [xg xi]; yg = [yg yi];
    if i == 1
        subplot(2,1,1); hold on;
        plot(H, xg(i),yg(i),'r.'); 
        text(xg(i),yg(i),num2str(i),'FontSize',7);
    end
    if length(xg) > lag
        [signals,avg,dev] = ...
            ThresholdingAlgo(yg,lag,threshold,influence);
        area(xg(lag+1:end),avg(lag+1:end)+threshold*dev(lag+1:end),...
            'FaceColor',[0.9 0.9 0.9],'EdgeColor','none');
        area(xg(lag+1:end),avg(lag+1:end)-threshold*dev(lag+1:end),...
            'FaceColor',[1 1 1],'EdgeColor','none');
        plot(xg(lag+1:end),avg(lag+1:end),'LineWidth',1,'Color','cyan');
        plot(xg(lag+1:end),avg(lag+1:end)+threshold*dev(lag+1:end),...
            'LineWidth',1,'Color','green');
        plot(xg(lag+1:end),avg(lag+1:end)-threshold*dev(lag+1:end),...
            'LineWidth',1,'Color','green');
        subplot(2,1,2); hold on; title('Signal output');
        stairs(xg(lag+1:end),signals(lag+1:end),'LineWidth',2,'Color','blue');
        ylim([-2 2]); xlim([0 50]); hold off;
    end
    subplot(2,1,1); hold on;
    for j=2:i
        plot(xg([j-1:j]),yg([j-1:j]),'r'); plot(H,xg(j),yg(j),'r.');
        text(xg(j),yg(j),num2str(j),'FontSize',7);
    end
end
end


4

Ecco il mio tentativo di creare una soluzione Ruby per "Smoothed z-score algo" dalla risposta accettata:

module ThresholdingAlgoMixin
  def mean(array)
    array.reduce(&:+) / array.size.to_f
  end

  def stddev(array)
    array_mean = mean(array)
    Math.sqrt(array.reduce(0.0) { |a, b| a.to_f + ((b.to_f - array_mean) ** 2) } / array.size.to_f)
  end

  def thresholding_algo(lag: 5, threshold: 3.5, influence: 0.5)
    return nil if size < lag * 2
    Array.new(size, 0).tap do |signals|
      filtered = Array.new(self)

      initial_slice = take(lag)
      avg_filter = Array.new(lag - 1, 0.0) + [mean(initial_slice)]
      std_filter = Array.new(lag - 1, 0.0) + [stddev(initial_slice)]
      (lag..size-1).each do |idx|
        prev = idx - 1
        if (fetch(idx) - avg_filter[prev]).abs > threshold * std_filter[prev]
          signals[idx] = fetch(idx) > avg_filter[prev] ? 1 : -1
          filtered[idx] = (influence * fetch(idx)) + ((1-influence) * filtered[prev])
        end

        filtered_slice = filtered[idx-lag..prev]
        avg_filter[idx] = mean(filtered_slice)
        std_filter[idx] = stddev(filtered_slice)
      end
    end
  end
end

E esempio di utilizzo:

test_data = [
  1, 1, 1.1, 1, 0.9, 1, 1, 1.1, 1, 0.9, 1, 1.1, 1, 1, 0.9, 1,
  1, 1.1, 1, 1, 1, 1, 1.1, 0.9, 1, 1.1, 1, 1, 0.9, 1, 1.1, 1,
  1, 1.1, 1, 0.8, 0.9, 1, 1.2, 0.9, 1, 1, 1.1, 1.2, 1, 1.5,
  1, 3, 2, 5, 3, 2, 1, 1, 1, 0.9, 1, 1, 3, 2.6, 4, 3, 3.2, 2,
  1, 1, 0.8, 4, 4, 2, 2.5, 1, 1, 1
].extend(ThresholdingAlgoMixin)

puts test_data.thresholding_algo.inspect

# Output: [
#   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
#   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0,
#   0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
#   1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0
# ]

Fantastico, grazie per averlo condiviso! Ti aggiungerò alla lista. Assicurati che per le applicazioni in tempo reale crei una funzione separata per aggiornare i segnali quando arriva un nuovo punto dati (invece di ripetere il ciclo di tutti i punti dati ogni volta).
Jean-Paul,

4

Una versione iterativa in python / numpy per la risposta https://stackoverflow.com/a/22640362/6029703 è qui. Questo codice è più veloce della media di calcolo e della deviazione standard ogni ritardo per dati di grandi dimensioni (100000+).

def peak_detection_smoothed_zscore_v2(x, lag, threshold, influence):
    '''
    iterative smoothed z-score algorithm
    Implementation of algorithm from https://stackoverflow.com/a/22640362/6029703
    '''
    import numpy as np
    labels = np.zeros(len(x))
    filtered_y = np.array(x)
    avg_filter = np.zeros(len(x))
    std_filter = np.zeros(len(x))
    var_filter = np.zeros(len(x))

    avg_filter[lag - 1] = np.mean(x[0:lag])
    std_filter[lag - 1] = np.std(x[0:lag])
    var_filter[lag - 1] = np.var(x[0:lag])
    for i in range(lag, len(x)):
        if abs(x[i] - avg_filter[i - 1]) > threshold * std_filter[i - 1]:
            if x[i] > avg_filter[i - 1]:
                labels[i] = 1
            else:
                labels[i] = -1
            filtered_y[i] = influence * x[i] + (1 - influence) * filtered_y[i - 1]
        else:
            labels[i] = 0
            filtered_y[i] = x[i]
        # update avg, var, std
        avg_filter[i] = avg_filter[i - 1] + 1. / lag * (filtered_y[i] - filtered_y[i - lag])
        var_filter[i] = var_filter[i - 1] + 1. / lag * ((filtered_y[i] - avg_filter[i - 1]) ** 2 - (
            filtered_y[i - lag] - avg_filter[i - 1]) ** 2 - (filtered_y[i] - filtered_y[i - lag]) ** 2 / lag)
        std_filter[i] = np.sqrt(var_filter[i])

    return dict(signals=labels,
                avgFilter=avg_filter,
                stdFilter=std_filter)

4

Pensavo che avrei fornito la mia implementazione Julia dell'algoritmo per gli altri. L'essenza può essere trovata qui

using Statistics
using Plots
function SmoothedZscoreAlgo(y, lag, threshold, influence)
    # Julia implimentation of http://stackoverflow.com/a/22640362/6029703
    n = length(y)
    signals = zeros(n) # init signal results
    filteredY = copy(y) # init filtered series
    avgFilter = zeros(n) # init average filter
    stdFilter = zeros(n) # init std filter
    avgFilter[lag - 1] = mean(y[1:lag]) # init first value
    stdFilter[lag - 1] = std(y[1:lag]) # init first value

    for i in range(lag, stop=n-1)
        if abs(y[i] - avgFilter[i-1]) > threshold*stdFilter[i-1]
            if y[i] > avgFilter[i-1]
                signals[i] += 1 # postive signal
            else
                signals[i] += -1 # negative signal
            end
            # Make influence lower
            filteredY[i] = influence*y[i] + (1-influence)*filteredY[i-1]
        else
            signals[i] = 0
            filteredY[i] = y[i]
        end
        avgFilter[i] = mean(filteredY[i-lag+1:i])
        stdFilter[i] = std(filteredY[i-lag+1:i])
    end
    return (signals = signals, avgFilter = avgFilter, stdFilter = stdFilter)
end


# Data
y = [1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1]

# Settings: lag = 30, threshold = 5, influence = 0
lag = 30
threshold = 5
influence = 0

results = SmoothedZscoreAlgo(y, lag, threshold, influence)
upper_bound = results[:avgFilter] + threshold * results[:stdFilter]
lower_bound = results[:avgFilter] - threshold * results[:stdFilter]
x = 1:length(y)

yplot = plot(x,y,color="blue", label="Y",legend=:topleft)
yplot = plot!(x,upper_bound, color="green", label="Upper Bound",legend=:topleft)
yplot = plot!(x,results[:avgFilter], color="cyan", label="Average Filter",legend=:topleft)
yplot = plot!(x,lower_bound, color="green", label="Lower Bound",legend=:topleft)
signalplot = plot(x,results[:signals],color="red",label="Signals",legend=:topleft)
plot(yplot,signalplot,layout=(2,1),legend=:topleft)

risultati


3

Ecco un'implementazione di Groovy (Java) dell'algoritmo smooth-z-score ( vedi risposta sopra ).

/**
 * "Smoothed zero-score alogrithm" shamelessly copied from https://stackoverflow.com/a/22640362/6029703
 *  Uses a rolling mean and a rolling deviation (separate) to identify peaks in a vector
 *
 * @param y - The input vector to analyze
 * @param lag - The lag of the moving window (i.e. how big the window is)
 * @param threshold - The z-score at which the algorithm signals (i.e. how many standard deviations away from the moving mean a peak (or signal) is)
 * @param influence - The influence (between 0 and 1) of new signals on the mean and standard deviation (how much a peak (or signal) should affect other values near it)
 * @return - The calculated averages (avgFilter) and deviations (stdFilter), and the signals (signals)
 */

public HashMap<String, List<Object>> thresholdingAlgo(List<Double> y, Long lag, Double threshold, Double influence) {
    //init stats instance
    SummaryStatistics stats = new SummaryStatistics()

    //the results (peaks, 1 or -1) of our algorithm
    List<Integer> signals = new ArrayList<Integer>(Collections.nCopies(y.size(), 0))
    //filter out the signals (peaks) from our original list (using influence arg)
    List<Double> filteredY = new ArrayList<Double>(y)
    //the current average of the rolling window
    List<Double> avgFilter = new ArrayList<Double>(Collections.nCopies(y.size(), 0.0d))
    //the current standard deviation of the rolling window
    List<Double> stdFilter = new ArrayList<Double>(Collections.nCopies(y.size(), 0.0d))
    //init avgFilter and stdFilter
    (0..lag-1).each { stats.addValue(y[it as int]) }
    avgFilter[lag - 1 as int] = stats.getMean()
    stdFilter[lag - 1 as int] = Math.sqrt(stats.getPopulationVariance()) //getStandardDeviation() uses sample variance (not what we want)
    stats.clear()
    //loop input starting at end of rolling window
    (lag..y.size()-1).each { i ->
        //if the distance between the current value and average is enough standard deviations (threshold) away
        if (Math.abs((y[i as int] - avgFilter[i - 1 as int]) as Double) > threshold * stdFilter[i - 1 as int]) {
            //this is a signal (i.e. peak), determine if it is a positive or negative signal
            signals[i as int] = (y[i as int] > avgFilter[i - 1 as int]) ? 1 : -1
            //filter this signal out using influence
            filteredY[i as int] = (influence * y[i as int]) + ((1-influence) * filteredY[i - 1 as int])
        } else {
            //ensure this signal remains a zero
            signals[i as int] = 0
            //ensure this value is not filtered
            filteredY[i as int] = y[i as int]
        }
        //update rolling average and deviation
        (i - lag..i-1).each { stats.addValue(filteredY[it as int] as Double) }
        avgFilter[i as int] = stats.getMean()
        stdFilter[i as int] = Math.sqrt(stats.getPopulationVariance()) //getStandardDeviation() uses sample variance (not what we want)
        stats.clear()
    }

    return [
        signals  : signals,
        avgFilter: avgFilter,
        stdFilter: stdFilter
    ]
}

Di seguito è riportato un test sullo stesso set di dati che produce gli stessi risultati dell'implementazione Python / numpy precedente .

    // Data
    def y = [1d, 1d, 1.1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 1d,
         1d, 1d, 1.1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d, 1.1d, 1d, 0.8d, 0.9d, 1d, 1.2d, 0.9d, 1d,
         1d, 1.1d, 1.2d, 1d, 1.5d, 1d, 3d, 2d, 5d, 3d, 2d, 1d, 1d, 1d, 0.9d, 1d,
         1d, 3d, 2.6d, 4d, 3d, 3.2d, 2d, 1d, 1d, 0.8d, 4d, 4d, 2d, 2.5d, 1d, 1d, 1d]

    // Settings
    def lag = 30
    def threshold = 5
    def influence = 0


    def thresholdingResults = thresholdingAlgo((List<Double>) y, (Long) lag, (Double) threshold, (Double) influence)

    println y.size()
    println thresholdingResults.signals.size()
    println thresholdingResults.signals

    thresholdingResults.signals.eachWithIndex { x, idx ->
        if (x) {
            println y[idx]
        }
    }

3

Ecco una versione Scala (non idiomatica) dell'algoritmo smoothed z-score :

/**
  * Smoothed zero-score alogrithm shamelessly copied from https://stackoverflow.com/a/22640362/6029703
  * Uses a rolling mean and a rolling deviation (separate) to identify peaks in a vector
  *
  * @param y - The input vector to analyze
  * @param lag - The lag of the moving window (i.e. how big the window is)
  * @param threshold - The z-score at which the algorithm signals (i.e. how many standard deviations away from the moving mean a peak (or signal) is)
  * @param influence - The influence (between 0 and 1) of new signals on the mean and standard deviation (how much a peak (or signal) should affect other values near it)
  * @return - The calculated averages (avgFilter) and deviations (stdFilter), and the signals (signals)
  */
private def smoothedZScore(y: Seq[Double], lag: Int, threshold: Double, influence: Double): Seq[Int] = {
  val stats = new SummaryStatistics()

  // the results (peaks, 1 or -1) of our algorithm
  val signals = mutable.ArrayBuffer.fill(y.length)(0)

  // filter out the signals (peaks) from our original list (using influence arg)
  val filteredY = y.to[mutable.ArrayBuffer]

  // the current average of the rolling window
  val avgFilter = mutable.ArrayBuffer.fill(y.length)(0d)

  // the current standard deviation of the rolling window
  val stdFilter = mutable.ArrayBuffer.fill(y.length)(0d)

  // init avgFilter and stdFilter
  y.take(lag).foreach(s => stats.addValue(s))

  avgFilter(lag - 1) = stats.getMean
  stdFilter(lag - 1) = Math.sqrt(stats.getPopulationVariance) // getStandardDeviation() uses sample variance (not what we want)

  // loop input starting at end of rolling window
  y.zipWithIndex.slice(lag, y.length - 1).foreach {
    case (s: Double, i: Int) =>
      // if the distance between the current value and average is enough standard deviations (threshold) away
      if (Math.abs(s - avgFilter(i - 1)) > threshold * stdFilter(i - 1)) {
        // this is a signal (i.e. peak), determine if it is a positive or negative signal
        signals(i) = if (s > avgFilter(i - 1)) 1 else -1
        // filter this signal out using influence
        filteredY(i) = (influence * s) + ((1 - influence) * filteredY(i - 1))
      } else {
        // ensure this signal remains a zero
        signals(i) = 0
        // ensure this value is not filtered
        filteredY(i) = s
      }

      // update rolling average and deviation
      stats.clear()
      filteredY.slice(i - lag, i).foreach(s => stats.addValue(s))
      avgFilter(i) = stats.getMean
      stdFilter(i) = Math.sqrt(stats.getPopulationVariance) // getStandardDeviation() uses sample variance (not what we want)
  }

  println(y.length)
  println(signals.length)
  println(signals)

  signals.zipWithIndex.foreach {
    case(x: Int, idx: Int) =>
      if (x == 1) {
        println(idx + " " + y(idx))
      }
  }

  val data =
    y.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> s, "name" -> "y", "row" -> "data") } ++
    avgFilter.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> s, "name" -> "avgFilter", "row" -> "data") } ++
    avgFilter.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> (s - threshold * stdFilter(i)), "name" -> "lower", "row" -> "data") } ++
    avgFilter.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> (s + threshold * stdFilter(i)), "name" -> "upper", "row" -> "data") } ++
    signals.zipWithIndex.map { case (s: Int, i: Int) => Map("x" -> i, "y" -> s, "name" -> "signal", "row" -> "signal") }

  Vegas("Smoothed Z")
    .withData(data)
    .mark(Line)
    .encodeX("x", Quant)
    .encodeY("y", Quant)
    .encodeColor(
      field="name",
      dataType=Nominal
    )
    .encodeRow("row", Ordinal)
    .show

  return signals
}

Ecco un test che restituisce gli stessi risultati delle versioni Python e Groovy:

val y = List(1d, 1d, 1.1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 1d,
  1d, 1d, 1.1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d, 1.1d, 1d, 0.8d, 0.9d, 1d, 1.2d, 0.9d, 1d,
  1d, 1.1d, 1.2d, 1d, 1.5d, 1d, 3d, 2d, 5d, 3d, 2d, 1d, 1d, 1d, 0.9d, 1d,
  1d, 3d, 2.6d, 4d, 3d, 3.2d, 2d, 1d, 1d, 0.8d, 4d, 4d, 2d, 2.5d, 1d, 1d, 1d)

val lag = 30
val threshold = 5d
val influence = 0d

smoothedZScore(y, lag, threshold, influence)

grafico di risultato di vegas

Gist qui


1 rappresenta i picchi, -1 rappresenta le valli.
Mike Roberts,

3

Avevo bisogno di qualcosa del genere nel mio progetto Android. Ho pensato di poter restituire l' implementazione di Kotlin .

/**
* Smoothed zero-score alogrithm shamelessly copied from https://stackoverflow.com/a/22640362/6029703
* Uses a rolling mean and a rolling deviation (separate) to identify peaks in a vector
*
* @param y - The input vector to analyze
* @param lag - The lag of the moving window (i.e. how big the window is)
* @param threshold - The z-score at which the algorithm signals (i.e. how many standard deviations away from the moving mean a peak (or signal) is)
* @param influence - The influence (between 0 and 1) of new signals on the mean and standard deviation (how much a peak (or signal) should affect other values near it)
* @return - The calculated averages (avgFilter) and deviations (stdFilter), and the signals (signals)
*/
fun smoothedZScore(y: List<Double>, lag: Int, threshold: Double, influence: Double): Triple<List<Int>, List<Double>, List<Double>> {
    val stats = SummaryStatistics()
    // the results (peaks, 1 or -1) of our algorithm
    val signals = MutableList<Int>(y.size, { 0 })
    // filter out the signals (peaks) from our original list (using influence arg)
    val filteredY = ArrayList<Double>(y)
    // the current average of the rolling window
    val avgFilter = MutableList<Double>(y.size, { 0.0 })
    // the current standard deviation of the rolling window
    val stdFilter = MutableList<Double>(y.size, { 0.0 })
    // init avgFilter and stdFilter
    y.take(lag).forEach { s -> stats.addValue(s) }
    avgFilter[lag - 1] = stats.mean
    stdFilter[lag - 1] = Math.sqrt(stats.populationVariance) // getStandardDeviation() uses sample variance (not what we want)
    stats.clear()
    //loop input starting at end of rolling window
    (lag..y.size - 1).forEach { i ->
        //if the distance between the current value and average is enough standard deviations (threshold) away
        if (Math.abs(y[i] - avgFilter[i - 1]) > threshold * stdFilter[i - 1]) {
            //this is a signal (i.e. peak), determine if it is a positive or negative signal
            signals[i] = if (y[i] > avgFilter[i - 1]) 1 else -1
            //filter this signal out using influence
            filteredY[i] = (influence * y[i]) + ((1 - influence) * filteredY[i - 1])
        } else {
            //ensure this signal remains a zero
            signals[i] = 0
            //ensure this value is not filtered
            filteredY[i] = y[i]
        }
        //update rolling average and deviation
        (i - lag..i - 1).forEach { stats.addValue(filteredY[it]) }
        avgFilter[i] = stats.getMean()
        stdFilter[i] = Math.sqrt(stats.getPopulationVariance()) //getStandardDeviation() uses sample variance (not what we want)
        stats.clear()
    }
    return Triple(signals, avgFilter, stdFilter)
}

Il progetto di esempio con grafici di verifica è disponibile su github .

inserisci qui la descrizione dell'immagine


Eccezionale! Grazie per la condivisione. Per le applicazioni in tempo reale, assicurarsi di creare una funzione separata che calcoli il nuovo segnale con ciascun punto dati in entrata. Non eseguire il ciclo completo dei dati ogni volta che arriva un nuovo punto dati, sarebbe estremamente inefficiente :)
Jean-Paul,

1
Buon punto, non ci ho pensato, perché le finestre che utilizzo non si sovrappongono.
leonardkraemer,

3

Ecco una versione Fortran modificata dell'algoritmo z-score . È stato modificato in modo specifico per il rilevamento di picco (risonanza) nelle funzioni di trasferimento nello spazio di frequenza (Ogni modifica ha un piccolo commento nel codice).

La prima modifica avvisa l'utente se c'è una risonanza vicino al limite inferiore del vettore di input, indicata da una deviazione standard superiore a una certa soglia (10% in questo caso). Ciò significa semplicemente che il segnale non è abbastanza piatto per il rilevamento che inizializza correttamente i filtri.

La seconda modifica è che solo il valore più alto di un picco viene aggiunto ai picchi trovati. Ciò si ottiene confrontando ciascun valore di picco trovato con l'entità dei suoi predecessori (lag) e dei suoi successori (lag).

Il terzo cambiamento è rispettare i picchi di risonanza che di solito mostrano una qualche forma di simmetria attorno alla frequenza di risonanza. Quindi è naturale calcolare la media e lo std simmetricamente attorno all'attuale punto dati (piuttosto che solo per i predecessori). Ciò si traduce in un migliore comportamento di rilevamento del picco.

Le modifiche hanno l'effetto che l'intero segnale deve essere noto in anticipo alla funzione, che è il solito caso per il rilevamento della risonanza (qualcosa come l'esempio Matlab di Jean-Paul in cui i punti dati vengono generati al volo non funzionerà).

function PeakDetect(y,lag,threshold, influence)
    implicit none
    ! Declaring part
    real, dimension(:), intent(in) :: y
    integer, dimension(size(y)) :: PeakDetect
    real, dimension(size(y)) :: filteredY, avgFilter, stdFilter
    integer :: lag, ii
    real :: threshold, influence

    ! Executing part
    PeakDetect = 0
    filteredY = 0.0
    filteredY(1:lag+1) = y(1:lag+1)
    avgFilter = 0.0
    avgFilter(lag+1) = mean(y(1:2*lag+1))
    stdFilter = 0.0
    stdFilter(lag+1) = std(y(1:2*lag+1))

    if (stdFilter(lag+1)/avgFilter(lag+1)>0.1) then ! If the coefficient of variation exceeds 10%, the signal is too uneven at the start, possibly because of a peak.
        write(unit=*,fmt=1001)
1001        format(1X,'Warning: Peak detection might have failed, as there may be a peak at the edge of the frequency range.',/)
    end if
    do ii = lag+2, size(y)
        if (abs(y(ii) - avgFilter(ii-1)) > threshold * stdFilter(ii-1)) then
            ! Find only the largest outstanding value which is only the one greater than its predecessor and its successor
            if (y(ii) > avgFilter(ii-1) .AND. y(ii) > y(ii-1) .AND. y(ii) > y(ii+1)) then
                PeakDetect(ii) = 1
            end if
            filteredY(ii) = influence * y(ii) + (1 - influence) * filteredY(ii-1)
        else
            filteredY(ii) = y(ii)
        end if
        ! Modified with respect to the original code. Mean and standard deviation are calculted symmetrically around the current point
        avgFilter(ii) = mean(filteredY(ii-lag:ii+lag))
        stdFilter(ii) = std(filteredY(ii-lag:ii+lag))
    end do
end function PeakDetect

real function mean(y)
    !> @brief Calculates the mean of vector y
    implicit none
    ! Declaring part
    real, dimension(:), intent(in) :: y
    integer :: N
    ! Executing part
    N = max(1,size(y))
    mean = sum(y)/N
end function mean

real function std(y)
    !> @brief Calculates the standard deviation of vector y
    implicit none
    ! Declaring part
    real, dimension(:), intent(in) :: y
    integer :: N
    ! Executing part
    N = max(1,size(y))
    std = sqrt((N*dot_product(y,y) - sum(y)**2) / (N*(N-1)))
end function std

Per la mia applicazione l'algoritmo funziona come un fascino! inserisci qui la descrizione dell'immagine


3

Se hai i tuoi dati in una tabella di database, ecco una versione SQL di un semplice algoritmo z-score:

with data_with_zscore as (
    select
        date_time,
        value,
        value / (avg(value) over ()) as pct_of_mean,
        (value - avg(value) over ()) / (stdev(value) over ()) as z_score
    from {{tablename}}  where datetime > '2018-11-26' and datetime < '2018-12-03'
)


-- select all
select * from data_with_zscore 

-- select only points greater than a certain threshold
select * from data_with_zscore where z_score > abs(2)

Il tuo codice fa qualcosa di diverso dall'algoritmo che ho proposto. La tua query calcola semplicemente i punteggi z ([data point - mean] / std), ma non incorpora la logica del mio algoritmo che ignora i segnali passati durante il calcolo di nuove soglie di segnale. Ignorate anche i tre parametri (ritardo, influenza, soglia). Potresti rivedere la tua risposta per incorporare la logica attuale?
Jean-Paul,

1
Si hai ragione. All'inizio ho pensato di riuscire a cavarmela con la versione semplificata di cui sopra. Da allora ho preso la tua soluzione completa e l'ho portata su C #. Vedi la mia risposta qui sotto. Quando avrò più tempo, visiterò nuovamente questa versione di SQL e incorporerò il tuo algoritmo. A proposito, grazie per una risposta così grande e una spiegazione visiva.
Ocean Airdrop,

Nessun problema e felice che l'algoritmo possa aiutarti! Grazie per la tua presentazione in C #, quella mancava ancora. Lo aggiungerò all'elenco delle traduzioni!
Jean-Paul,

3

Versione di Python che funziona con flussi in tempo reale (non ricalcola tutti i punti dati all'arrivo di ogni nuovo punto dati). Potresti voler modificare ciò che la funzione di classe restituisce - per i miei scopi avevo solo bisogno dei segnali.

import numpy as np

class real_time_peak_detection():
    def __init__(self, array, lag, threshold, influence):
        self.y = list(array)
        self.length = len(self.y)
        self.lag = lag
        self.threshold = threshold
        self.influence = influence
        self.signals = [0] * len(self.y)
        self.filteredY = np.array(self.y).tolist()
        self.avgFilter = [0] * len(self.y)
        self.stdFilter = [0] * len(self.y)
        self.avgFilter[self.lag - 1] = np.mean(self.y[0:self.lag]).tolist()
        self.stdFilter[self.lag - 1] = np.std(self.y[0:self.lag]).tolist()

    def thresholding_algo(self, new_value):
        self.y.append(new_value)
        i = len(self.y) - 1
        self.length = len(self.y)
        if i < self.lag:
            return 0
        elif i == self.lag:
            self.signals = [0] * len(self.y)
            self.filteredY = np.array(self.y).tolist()
            self.avgFilter = [0] * len(self.y)
            self.stdFilter = [0] * len(self.y)
            self.avgFilter[self.lag - 1] = np.mean(self.y[0:self.lag]).tolist()
            self.stdFilter[self.lag - 1] = np.std(self.y[0:self.lag]).tolist()
            return 0

        self.signals += [0]
        self.filteredY += [0]
        self.avgFilter += [0]
        self.stdFilter += [0]

        if abs(self.y[i] - self.avgFilter[i - 1]) > self.threshold * self.stdFilter[i - 1]:
            if self.y[i] > self.avgFilter[i - 1]:
                self.signals[i] = 1
            else:
                self.signals[i] = -1

            self.filteredY[i] = self.influence * self.y[i] + (1 - self.influence) * self.filteredY[i - 1]
            self.avgFilter[i] = np.mean(self.filteredY[(i - self.lag):i])
            self.stdFilter[i] = np.std(self.filteredY[(i - self.lag):i])
        else:
            self.signals[i] = 0
            self.filteredY[i] = self.y[i]
            self.avgFilter[i] = np.mean(self.filteredY[(i - self.lag):i])
            self.stdFilter[i] = np.std(self.filteredY[(i - self.lag):i])

        return self.signals[i]

Grazie per la pubblicazione, ho aggiunto la tua traduzione all'elenco.
Jean-Paul,

3

Mi sono permesso di crearne una versione javascript. Potrebbe essere utile. Il javascript dovrebbe essere la trascrizione diretta dello pseudocodice sopra indicato. Disponibile come pacchetto npm e repository github:

Traduzione Javascript:

// javascript port of: /programming/22583391/peak-signal-detection-in-realtime-timeseries-data/48895639#48895639

function sum(a) {
    return a.reduce((acc, val) => acc + val)
}

function mean(a) {
    return sum(a) / a.length
}

function stddev(arr) {
    const arr_mean = mean(arr)
    const r = function(acc, val) {
        return acc + ((val - arr_mean) * (val - arr_mean))
    }
    return Math.sqrt(arr.reduce(r, 0.0) / arr.length)
}

function smoothed_z_score(y, params) {
    var p = params || {}
    // init cooefficients
    const lag = p.lag || 5
    const threshold = p.threshold || 3.5
    const influence = p.influece || 0.5

    if (y === undefined || y.length < lag + 2) {
        throw ` ## y data array to short(${y.length}) for given lag of ${lag}`
    }
    //console.log(`lag, threshold, influence: ${lag}, ${threshold}, ${influence}`)

    // init variables
    var signals = Array(y.length).fill(0)
    var filteredY = y.slice(0)
    const lead_in = y.slice(0, lag)
    //console.log("1: " + lead_in.toString())

    var avgFilter = []
    avgFilter[lag - 1] = mean(lead_in)
    var stdFilter = []
    stdFilter[lag - 1] = stddev(lead_in)
    //console.log("2: " + stdFilter.toString())

    for (var i = lag; i < y.length; i++) {
        //console.log(`${y[i]}, ${avgFilter[i-1]}, ${threshold}, ${stdFilter[i-1]}`)
        if (Math.abs(y[i] - avgFilter[i - 1]) > (threshold * stdFilter[i - 1])) {
            if (y[i] > avgFilter[i - 1]) {
                signals[i] = +1 // positive signal
            } else {
                signals[i] = -1 // negative signal
            }
            // make influence lower
            filteredY[i] = influence * y[i] + (1 - influence) * filteredY[i - 1]
        } else {
            signals[i] = 0 // no signal
            filteredY[i] = y[i]
        }

        // adjust the filters
        const y_lag = filteredY.slice(i - lag, i)
        avgFilter[i] = mean(y_lag)
        stdFilter[i] = stddev(y_lag)
    }

    return signals
}

module.exports = smoothed_z_score

Grazie per aver pubblicato la tua traduzione. Ho aggiunto il tuo codice alla tua risposta in modo che le persone possano vederlo rapidamente. Aggiungerò la tua traduzione all'elenco.
Jean-Paul,

Ormai, ho portato un altro algoritmo su javascript. Questa volta dal pyhon numerico, che mi dà più controllo e funziona meglio per me. Anche confezionato in npm e puoi trovare maggiori informazioni sull'algo dell'Università di Washington sulla loro pagina di Jupyter. npmjs.com/package/@joe_six/duarte-watanabe-peak-detection
Dirk Lüsebrink

2

Se il valore limite o altri criteri dipendono da valori futuri, l'unica soluzione (senza una macchina del tempo o altra conoscenza dei valori futuri) è quella di ritardare qualsiasi decisione fino a quando non si hanno sufficienti valori futuri. Se vuoi un livello superiore a una media che si estende, ad esempio, 20 punti, allora devi aspettare fino a quando non hai almeno 19 punti in anticipo rispetto a qualsiasi decisione di picco, altrimenti il ​​prossimo nuovo punto potrebbe gettare completamente la soglia 19 punti fa .

La trama attuale non ha alcun picco ... a meno che tu non sappia in anticipo che il punto successivo non è 1e99, che dopo aver ridimensionato la dimensione Y della trama, sarebbe piatta fino a quel punto.


Come ho detto prima, possiamo supporre che se si verifica un picco, è grande quanto i picchi nell'immagine e si discosta significativamente dai valori "normali".
Jean-Paul,

Se sai quanto saranno grandi i picchi in anticipo, allora pre-imposta la tua media e / o soglia appena sotto quel valore.
hotpaw2,

1
Ed è esattamente quello che non so in anticipo.
Jean-Paul,

1
Ti sei appena contraddetto e hai scritto che i picchi sono noti per essere le dimensioni nella foto. O lo sai o non lo sai.
hotpaw2,

2
Sto cercando di spiegartelo. Hai avuto l'idea adesso? 'Come identificare picchi significativamente grandi'. È possibile affrontare il problema statisticamente o con un algoritmo intelligente. Con .. As large as in the pictureintendevo: per situazioni simili in cui vi sono picchi significativi e rumore di base.
Jean-Paul,

2

Ed ecco che arriva l' implementazione PHP dell'algo ZSCORE:

<?php
$y = array(1,7,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,10,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1);

function mean($data, $start, $len) {
    $avg = 0;
    for ($i = $start; $i < $start+ $len; $i ++)
        $avg += $data[$i];
    return $avg / $len;
}

function stddev($data, $start,$len) {
    $mean = mean($data,$start,$len);
    $dev = 0;
    for ($i = $start; $i < $start+$len; $i++) 
        $dev += (($data[$i] - $mean) * ($data[$i] - $mean));
    return sqrt($dev / $len);
}

function zscore($data, $len, $lag= 20, $threshold = 1, $influence = 1) {

    $signals = array();
    $avgFilter = array();
    $stdFilter = array();
    $filteredY = array();
    $avgFilter[$lag - 1] = mean($data, 0, $lag);
    $stdFilter[$lag - 1] = stddev($data, 0, $lag);

    for ($i = 0; $i < $len; $i++) {
        $filteredY[$i] = $data[$i];
        $signals[$i] = 0;
    }


    for ($i=$lag; $i < $len; $i++) {
        if (abs($data[$i] - $avgFilter[$i-1]) > $threshold * $stdFilter[$lag - 1]) {
            if ($data[$i] > $avgFilter[$i-1]) {
                $signals[$i] = 1;
            }
            else {
                $signals[$i] = -1;
            }
            $filteredY[$i] = $influence * $data[$i] + (1 - $influence) * $filteredY[$i-1];
        } 
        else {
            $signals[$i] = 0;
            $filteredY[$i] = $data[$i];
        }

        $avgFilter[$i] = mean($filteredY, $i - $lag, $lag);
        $stdFilter[$i] = stddev($filteredY, $i - $lag, $lag);
    }
    return $signals;
}

$sig = zscore($y, count($y));

print_r($y); echo "<br><br>";
print_r($sig); echo "<br><br>";

for ($i = 0; $i < count($y); $i++) echo $i. " " . $y[$i]. " ". $sig[$i]."<br>";

?>

Grazie per la pubblicazione, ho aggiunto la tua traduzione all'elenco.
Jean-Paul,

1
Un commento: dato che questo algoritmo verrà utilizzato principalmente sui dati campionati, ti suggerisco di implementare la deviazione standard del campione dividendo per ($len - 1)invece che $leninstddev()
Jean-Paul,

1

Invece di confrontare i massimi con la media, si possono anche confrontare i massimi con i minimi adiacenti dove i minimi sono definiti solo al di sopra di una soglia di rumore. Se il massimo locale è> 3 volte (o altro fattore di confidenza) uno dei minimi adiacenti, quel massimo è un picco. La determinazione del picco è più accurata con finestre mobili più ampie. Quanto sopra utilizza un calcolo centrato al centro della finestra, tra l'altro, piuttosto che un calcolo alla fine della finestra (== ritardo).

Si noti che i massimi devono essere visti come un aumento del segnale prima e una diminuzione dopo.


1

La funzione scipy.signal.find_peaks, come suggerisce il nome, è utile per questo. Ma è importante capire bene i suoi parametri widthe threshold, distance soprattutto,prominence ottenere una buona estrazione del picco.

Secondo i miei test e la documentazione, il concetto di prominenza è "il concetto utile" per mantenere le buone vette e scartare le vette rumorose.

Cos'è la prominenza (topografica) ? È "l'altezza minima necessaria per scendere dalla vetta a qualsiasi terreno più elevato" , come si può vedere qui:

L'idea è:

Maggiore è la prominenza, più "importante" è il picco.


1

Versione orientata agli oggetti dell'algoritmo z-score usando C +++ mordern

template<typename T>
class FindPeaks{
private:
    std::vector<T> m_input_signal;                      // stores input vector
    std::vector<T> m_array_peak_positive;               
    std::vector<T> m_array_peak_negative;               

public:
    FindPeaks(const std::vector<T>& t_input_signal): m_input_signal{t_input_signal}{ }

    void estimate(){
        int lag{5};
        T threshold{ 5 };                                                                                       // set a threshold
        T influence{ 0.5 };                                                                                    // value between 0 to 1, 1 is normal influence and 0.5 is half the influence

        std::vector<T> filtered_signal(m_input_signal.size(), 0.0);                                             // placeholdered for smooth signal, initialie with all zeros
        std::vector<int> signal(m_input_signal.size(), 0);                                                          // vector that stores where the negative and positive located
        std::vector<T> avg_filtered(m_input_signal.size(), 0.0);                                                // moving averages
        std::vector<T> std_filtered(m_input_signal.size(), 0.0);                                                // moving standard deviation

        avg_filtered[lag] = findMean(m_input_signal.begin(), m_input_signal.begin() + lag);                         // pass the iteartor to vector
        std_filtered[lag] = findStandardDeviation(m_input_signal.begin(), m_input_signal.begin() + lag);

        for (size_t iLag = lag + 1; iLag < m_input_signal.size(); ++iLag) {                                         // start index frm 
            if (std::abs(m_input_signal[iLag] - avg_filtered[iLag - 1]) > threshold * std_filtered[iLag - 1]) {     // check if value is above threhold             
                if ((m_input_signal[iLag]) > avg_filtered[iLag - 1]) {
                    signal[iLag] = 1;                                                                               // assign positive signal
                }
                else {
                    signal[iLag] = -1;                                                                                  // assign negative signal
                }
                filtered_signal[iLag] = influence * m_input_signal[iLag] + (1 - influence) * filtered_signal[iLag - 1];        // exponential smoothing
            }
            else {
                signal[iLag] = 0;                                                                                         // no signal
                filtered_signal[iLag] = m_input_signal[iLag];
            }

            avg_filtered[iLag] = findMean(filtered_signal.begin() + (iLag - lag), filtered_signal.begin() + iLag);
            std_filtered[iLag] = findStandardDeviation(filtered_signal.begin() + (iLag - lag), filtered_signal.begin() + iLag);

        }

        for (size_t iSignal = 0; iSignal < m_input_signal.size(); ++iSignal) {
            if (signal[iSignal] == 1) {
                m_array_peak_positive.emplace_back(m_input_signal[iSignal]);                                        // store the positive peaks
            }
            else if (signal[iSignal] == -1) {
                m_array_peak_negative.emplace_back(m_input_signal[iSignal]);                                         // store the negative peaks
            }
        }
        printVoltagePeaks(signal, m_input_signal);

    }

    std::pair< std::vector<T>, std::vector<T> > get_peaks()
    {
        return std::make_pair(m_array_peak_negative, m_array_peak_negative);
    }

};


template<typename T1, typename T2 >
void printVoltagePeaks(std::vector<T1>& m_signal, std::vector<T2>& m_input_signal) {
    std::ofstream output_file("./voltage_peak.csv");
    std::ostream_iterator<T2> output_iterator_voltage(output_file, ",");
    std::ostream_iterator<T1> output_iterator_signal(output_file, ",");
    std::copy(m_input_signal.begin(), m_input_signal.end(), output_iterator_voltage);
    output_file << "\n";
    std::copy(m_signal.begin(), m_signal.end(), output_iterator_signal);
}

template<typename iterator_type>
typename std::iterator_traits<iterator_type>::value_type findMean(iterator_type it, iterator_type end)
{
    /* function that receives iterator to*/
    typename std::iterator_traits<iterator_type>::value_type sum{ 0.0 };
    int counter = 0;
    while (it != end) {
        sum += *(it++);
        counter++;
    }
    return sum / counter;
}

template<typename iterator_type>
typename std::iterator_traits<iterator_type>::value_type findStandardDeviation(iterator_type it, iterator_type end)
{
    auto mean = findMean(it, end);
    typename std::iterator_traits<iterator_type>::value_type sum_squared_error{ 0.0 };
    int counter{ 0 };
    while (it != end) {
        sum_squared_error += std::pow((*(it++) - mean), 2);
        counter++;
    }
    auto standard_deviation = std::sqrt(sum_squared_error / (counter - 1));
    return standard_deviation;
}

2
Bella traduzione. Sarebbe un po 'più bello se l'oggetto salva anche i filtered_signal, signal, avg_filterede std_filteredcome variabili private e aggiorna solo le matrici volta in caso di nuove datapoint arriva (Ora il codice loop su tutti datapoints ogni volta si chiama). Ciò migliorerebbe le prestazioni del tuo codice e si adatta ancora meglio alla struttura OOP.
Jean-Paul,
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.