Riproduzione di un tono arbitrario con Android


92

C'è un modo per fare in modo che Android emetta un suono di frequenza arbitraria (il che significa che non voglio avere file audio preregistrati)?

Mi sono guardato intorno e ToneGenerator era l'unica cosa che sono riuscito a trovare che fosse anche vicino, ma sembra essere in grado di emettere solo i toni DTMF standard.

Qualche idea?


2
Hai trovato una vera soluzione?
o0 '.

20
No, ma ho finito per non fare il progetto.
Jeremy Logan

1
@ JeremyLogan E hai ricevuto un feedback negativo positivo. lol.
TheRealChx101

Risposte:


109

Inizialmente ho trovato questo codice di esempio su un blog, ma conteneva alcuni bug che generavano suoni orrendi. Ho corretto i bug e pubblicato il codice risultante qui. Sembra funzionare bene per me!

public class PlaySound extends Activity {
    // originally from http://marblemice.blogspot.com/2010/04/generate-and-play-tone-in-android.html
    // and modified by Steve Pomeroy <steve@staticfree.info>
    private final int duration = 3; // seconds
    private final int sampleRate = 8000;
    private final int numSamples = duration * sampleRate;
    private final double sample[] = new double[numSamples];
    private final double freqOfTone = 440; // hz

    private final byte generatedSnd[] = new byte[2 * numSamples];

    Handler handler = new Handler();

    @Override
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.main);
    }

    @Override
    protected void onResume() {
        super.onResume();

        // Use a new tread as this can take a while
        final Thread thread = new Thread(new Runnable() {
            public void run() {
                genTone();
                handler.post(new Runnable() {

                    public void run() {
                        playSound();
                    }
                });
            }
        });
        thread.start();
    }

    void genTone(){
        // fill out the array
        for (int i = 0; i < numSamples; ++i) {
            sample[i] = Math.sin(2 * Math.PI * i / (sampleRate/freqOfTone));
        }

        // convert to 16 bit pcm sound array
        // assumes the sample buffer is normalised.
        int idx = 0;
        for (final double dVal : sample) {
            // scale to maximum amplitude
            final short val = (short) ((dVal * 32767));
            // in 16 bit wav PCM, first byte is the low order byte
            generatedSnd[idx++] = (byte) (val & 0x00ff);
            generatedSnd[idx++] = (byte) ((val & 0xff00) >>> 8);

        }
    }

    void playSound(){
        final AudioTrack audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC,
                sampleRate, AudioFormat.CHANNEL_OUT_MONO,
                AudioFormat.ENCODING_PCM_16BIT, generatedSnd.length,
                AudioTrack.MODE_STATIC);
        audioTrack.write(generatedSnd, 0, generatedSnd.length);
        audioTrack.play();
    }
}

2
Questa linea è corretta? audioTrack.write (generatedSnd, 0, numSamples); o dovrebbe essere numSamples * 2 perché ci sono 2 byte per campione. Anche il metodo di scrittura accetta anche un array di cortocircuiti, quindi qual è il vantaggio di creare un array intermedio di byte?
Damian Kennedy

2
Questo è davvero un ottimo esempio, grazie mille. Tuttavia ho trovato un altro brutto bug (se estendi il codice), che è: audioTrack.write (generatedSnd, 0, numSamples) dovrebbe essere audioTrack.write (generatedSnd, 0, 2 * numSamples) o meglio audioTrack.write (generatedSnd, 0 , generatedSnd.length);
AudioDroid

6
Invece di utilizzare "numSamples" nel costruttore AudioTrack, dovresti usare generatedSnd.length perché il quinto parametro è "dimensione del buffer in byte". L'esempio riproduce solo la prima metà del tono.
Torben

5
@ Black27 I campioni vengono creati in virgola mobile con un intervallo di ampiezza da 0.0a 1.0. Moltiplicare per 32767lo convertirà nell'intervallo di punti fissi a 16 bit. L' AudioTrack si aspetta che il buffer sia in formato little endian . Quindi le due righe successive convertono semplicemente l'ordine dei byte da big endian a little endian.
ain

2
utilizzando private static final int sampleRate = 192000; Sono stato in grado di riprodurre ultra-sonic
user3505444

26

Miglioramento del codice sopra:

Aggiungi la rampa di ampiezza verso l'alto e verso il basso per evitare i clic.

Aggiungi il codice per determinare quando la virata ha finito di giocare.

double duration = 1;            // seconds
double freqOfTone = 1000;       // hz
int sampleRate = 8000;          // a number

double dnumSamples = duration * sampleRate;
dnumSamples = Math.ceil(dnumSamples);
int numSamples = (int) dnumSamples;
double sample[] = new double[numSamples];
byte generatedSnd[] = new byte[2 * numSamples];


for (int i = 0; i < numSamples; ++i) {    // Fill the sample array
    sample[i] = Math.sin(freqOfTone * 2 * Math.PI * i / (sampleRate));
}

// convert to 16 bit pcm sound array
// assumes the sample buffer is normalized.
// convert to 16 bit pcm sound array
// assumes the sample buffer is normalised.
int idx = 0;
int i = 0 ;

int ramp = numSamples / 20 ;                                     // Amplitude ramp as a percent of sample count


for (i = 0; i< ramp; ++i) {                                      // Ramp amplitude up (to avoid clicks)
    double dVal = sample[i];
                                                                 // Ramp up to maximum
    final short val = (short) ((dVal * 32767 * i/ramp));
                                                                 // in 16 bit wav PCM, first byte is the low order byte
    generatedSnd[idx++] = (byte) (val & 0x00ff);
    generatedSnd[idx++] = (byte) ((val & 0xff00) >>> 8);
}


for (i = i; i< numSamples - ramp; ++i) {                         // Max amplitude for most of the samples
    double dVal = sample[i];
                                                                 // scale to maximum amplitude
    final short val = (short) ((dVal * 32767));
                                                                 // in 16 bit wav PCM, first byte is the low order byte
    generatedSnd[idx++] = (byte) (val & 0x00ff);
    generatedSnd[idx++] = (byte) ((val & 0xff00) >>> 8);
}

for (i = i; i< numSamples; ++i) {                                // Ramp amplitude down
    double dVal = sample[i];
                                                                 // Ramp down to zero
    final short val = (short) ((dVal * 32767 * (numSamples-i)/ramp ));
                                                                 // in 16 bit wav PCM, first byte is the low order byte
    generatedSnd[idx++] = (byte) (val & 0x00ff);
    generatedSnd[idx++] = (byte) ((val & 0xff00) >>> 8);
}

AudioTrack audioTrack = null;                                    // Get audio track
try {
    audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC,
        sampleRate, AudioFormat.CHANNEL_CONFIGURATION_MONO,
        AudioFormat.ENCODING_PCM_16BIT, (int)numSamples*2,
        AudioTrack.MODE_STATIC);
    audioTrack.write(generatedSnd, 0, generatedSnd.length);        // Load the track
    audioTrack.play();                                             // Play the track
}
catch (Exception e){
    RunTimeError("Error: " + e);
    return false;
}

int x =0;
do{                                                              // Monitor playback to find when done
    if (audioTrack != null) 
        x = audioTrack.getPlaybackHeadPosition(); 
    else 
        x = numSamples;
} while (x<numSamples);

if (audioTrack != null) audioTrack.release();                    // Track play done. Release track.

1
Il cambiamento principale è stato la rampa su e giù dell'ampiezza. Il codice originale iniziava e terminava con la massima ampiezza. Questo produce clic all'inizio e alla fine del tono. Questo codice aumenta l'ampiezza da 0 a piena ampiezza nel primo 20% dei campioni. Quindi scende dall'ampiezza massima a zero nell'ultimo 20% dei campioni. I toni sono più morbidi e molto più piacevoli. L'altro cambiamento è stato quello di monitorare la riproduzione del tono e non continuare fino a quando il tono non ha finito di suonare.
Xarph

Non mi piace farlo funzionare .. Sono in grado di eseguire il primo .. ma non riesco davvero a capire come modificarlo in quello che hai fatto .. sarebbe davvero utile perché sto cercando di sbarazzarmi del suono del clic. .
Coder

3
+1, ma il codice in questa risposta non si avvicina alla compilazione. L'ho implementato correttamente qui: gist.github.com/SuspendedPhan/7596139 Sostituisci semplicemente il metodo genTone () di Steve con il mio e otterrai l'effetto ramping.
Dylan P

Poiché c'è una perdita di memoria su MODE_STATIC, ho modificato il codice per utilizzare MODE_STREAM di seguito
estremo

A partire dall'API, è possibile eseguire la rampa utilizzando setVolume (). Ciò consente di riprodurre in loop un campione molto piccolo e persino di riprodurre un suono per una durata dinamica (ad es. Mentre l'utente tiene una pressione). Esempio di codice: github.com/stefanhaustein/android-tone-generator/blob/master/…
Stefan Haustein

8

Ho avvolto le meravigliose soluzioni di cui sopra in un piccolo pacchetto pulito che è più utilizzabile fuori dalla scatola come un semplice cicalino configurabile. Lo esegue in un thread in background e ha metodi di interruzione e riproduzione e una manciata di opzioni che puoi impostare.

È su JCenter, quindi puoi aggiungerlo all'elenco delle dipendenze in questo modo

compile 'net.mabboud:android-tone-player:0.2'

e lo usi in questo modo per un cicalino continuo

ContinuousBuzzer tonePlayer = new ContinuousBuzzer();
tonePlayer.play();

// just an example don't actually use Thread.sleep in your app
Thread.sleep(1000); 
tonePlayer.stop();

o un cicalino suonato solo una volta e puoi impostare la frequenza e il volume in questo modo

OneTimeBuzzer buzzer = new OneTimeBuzzer();
buzzer.setDuration(5);

// volume values are from 0-100
buzzer.setVolume(50);
buzzer.setToneFreqInHz(110);

Post sul blog esteso qui su di esso qui GitHub qui


@ Melchester ora è stato risolto. Grazie per l'
avviso

4

Poiché in alcune versioni precedenti di Android è presente un bug che causa una perdita di memoria quando si utilizza MODE_STATIC, ho modificato la risposta di Xarph sopra per utilizzare MODE_STREAM. Si spera che possa aiutare alcuni.

public void playTone(double freqOfTone, double duration) {
 //double duration = 1000;                // seconds
 //   double freqOfTone = 1000;           // hz
    int sampleRate = 8000;              // a number

    double dnumSamples = duration * sampleRate;
    dnumSamples = Math.ceil(dnumSamples);
    int numSamples = (int) dnumSamples;
    double sample[] = new double[numSamples];
    byte generatedSnd[] = new byte[2 * numSamples];


    for (int i = 0; i < numSamples; ++i) {      // Fill the sample array
        sample[i] = Math.sin(freqOfTone * 2 * Math.PI * i / (sampleRate));
    }

    // convert to 16 bit pcm sound array
    // assumes the sample buffer is normalized.
    // convert to 16 bit pcm sound array
    // assumes the sample buffer is normalised.
    int idx = 0;
    int i = 0 ;

    int ramp = numSamples / 20 ;                                    // Amplitude ramp as a percent of sample count


    for (i = 0; i< ramp; ++i) {                                     // Ramp amplitude up (to avoid clicks)
        double dVal = sample[i];
                                                                    // Ramp up to maximum
        final short val = (short) ((dVal * 32767 * i/ramp));
                                                                    // in 16 bit wav PCM, first byte is the low order byte
        generatedSnd[idx++] = (byte) (val & 0x00ff);
        generatedSnd[idx++] = (byte) ((val & 0xff00) >>> 8);
    }


    for (i = i; i< numSamples - ramp; ++i) {                        // Max amplitude for most of the samples
        double dVal = sample[i];
                                                                    // scale to maximum amplitude
        final short val = (short) ((dVal * 32767));
                                                                    // in 16 bit wav PCM, first byte is the low order byte
        generatedSnd[idx++] = (byte) (val & 0x00ff);
        generatedSnd[idx++] = (byte) ((val & 0xff00) >>> 8);
    }

    for (i = i; i< numSamples; ++i) {                               // Ramp amplitude down
        double dVal = sample[i];
                                                                    // Ramp down to zero
        final short val = (short) ((dVal * 32767 * (numSamples-i)/ramp ));
                                                                    // in 16 bit wav PCM, first byte is the low order byte
        generatedSnd[idx++] = (byte) (val & 0x00ff);
        generatedSnd[idx++] = (byte) ((val & 0xff00) >>> 8);
    }

    AudioTrack audioTrack = null;                                   // Get audio track
    try {
         int bufferSize = AudioTrack.getMinBufferSize(sampleRate, AudioFormat.CHANNEL_OUT_MONO, AudioFormat.ENCODING_PCM_16BIT);
        audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC,
                sampleRate, AudioFormat.CHANNEL_OUT_MONO,
                AudioFormat.ENCODING_PCM_16BIT, bufferSize,
                AudioTrack.MODE_STREAM);
        audioTrack.play();                                          // Play the track
        audioTrack.write(generatedSnd, 0, generatedSnd.length);     // Load the track
    }
    catch (Exception e){
    }
    if (audioTrack != null) audioTrack.release();           // Track play done. Release track.
}


3

Codice modificato basato sulla risposta di Singhaks

public class MainActivity extends Activity {
    private final int duration = 30; // seconds
    private final int sampleRate = 8000;
    private final int numSamples = duration * sampleRate;
    private final double sample[] = new double[numSamples];
    private final double freqOfTone = 440; // hz
    private final byte generatedSnd[] = new byte[2 * numSamples];
    Handler handler = new Handler();
    private AudioTrack audioTrack;
    private boolean play = false;
    @Override
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC,
                8000, AudioFormat.CHANNEL_OUT_MONO,
                AudioFormat.ENCODING_PCM_16BIT, numSamples,
                AudioTrack.MODE_STREAM);
    }

    @Override
    protected void onResume() {
        super.onResume();

        // Use a new tread as this can take a while
        Thread thread = new Thread(new Runnable() {
            public void run() {

                handler.post(new Runnable() {

                    public void run() {
                        playSound();
                        genTone();
                    }
                });
            }   
        });
        thread.start();
    }

    void genTone(){
        // fill out the array
        while(play){
                for (int i = 0; i < numSamples; ++i) {
                //  float angular_frequency = 
                    sample[i] = Math.sin(2 * Math.PI * i / (sampleRate/freqOfTone));
                }
                int idx = 0;

                // convert to 16 bit pcm sound array
                // assumes the sample buffer is normalised.
                for (double dVal : sample) {
                    short val = (short) (dVal * 32767);
                    generatedSnd[idx++] = (byte) (val & 0x00ff);
                    generatedSnd[idx++] = (byte) ((val & 0xff00) >>> 8);
                }
                audioTrack.write(generatedSnd, 0, numSamples);
            }
        }


    void playSound(){
        play = true;
        audioTrack.play();
    }
}

2
    float synth_frequency = 440;
    int minSize = AudioTrack.getMinBufferSize(SAMPLE_RATE,
AudioFormat.CHANNEL_OUT_MONO,
AudioFormat.ENCODING_PCM_16BIT);
AudioTrack audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC,
SAMPLE_RATE,
AudioFormat.CHANNEL_OUT_MONO,
AudioFormat.ENCODING_PCM_16BIT,
minSize,
AudioTrack.MODE_STREAM);
audioTrack.play();
short[] buffer = new short[minSize];
float angle = 0;
while (true) 
{
    if (play)
    {
        for (int i = 0; i < buffer.length; i++)
        {
            float angular_frequency =
            (float)(2*Math.PI) * synth_frequency / SAMPLE_RATE;
            buffer[i] = (short)(Short.MAX_VALUE * ((float) Math.sin(angle)));
            angle += angular_frequency;
    }
        audioTrack.write(buffer, 0, buffer.length);
    } 

// Puoi aggiungere un valore arbitrario in synth_frequency per ottenere il suono del cambio, ad esempio puoi aggiungere una variabile casuale per ottenere il suono


Stai convertendo tutto in un corto, alla fine. Non c'è motivo di usare l'angolo come galleggiante. double math è la stessa velocità e non richiede un sacco di casting.
Tatarize

2

Do major (16 note)

 public class MainActivity extends AppCompatActivity {

  private double mInterval = 0.125;
  private int mSampleRate = 8000;
  private byte[] generatedSnd;

  private final double mStandardFreq = 440;

  Handler handler = new Handler();
  private AudioTrack audioTrack;


  @Override
  protected void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    setContentView(R.layout.activity_main);
  }

  @Override
  protected void onResume() {
    super.onResume();

    // Use a new tread as this can take a while
    final Thread thread = new Thread(new Runnable() {
        public void run() {

            byte[] tempByte = new byte[0];
            for (int i = 0; i < 16 ; i++ ){
                double note = getNoteFrequencies(i);
                byte[] tonByteNote = getTone(mInterval, mSampleRate, note);
                tempByte = concat(tonByteNote, tempByte);
            }
            generatedSnd = tempByte;

            handler.post(new Runnable() {
                public void run() {
                    playTrack(generatedSnd);
                }
            });
        }
    });
    thread.start();
  }

  public byte[] concat(byte[] a, byte[] b) {
    int aLen = a.length;
    int bLen = b.length;
    byte[] c= new byte[aLen+bLen];
    System.arraycopy(a, 0, c, 0, aLen);
    System.arraycopy(b, 0, c, aLen, bLen);
    return c;
  }

  private double getNoteFrequencies(int index){
    return mStandardFreq * Math.pow(2, (double) index/12.0d);
  }

  private byte[] getTone(double duration, int rate, double frequencies){

    int maxLength = (int)(duration * rate);
    byte generatedTone[] = new byte[2 * maxLength];

    double[] sample = new double[maxLength];
    int idx = 0;

    for (int x = 0; x < maxLength; x++){
        sample[x] = sine(x, frequencies / rate);
    }


    for (final double dVal : sample) {

        final short val = (short) ((dVal * 32767));

        // in 16 bit wav PCM, first byte is the low order byte
        generatedTone[idx++] = (byte) (val & 0x00ff);
        generatedTone[idx++] = (byte) ((val & 0xff00) >>> 8);

    }

    return generatedTone;
}

  private AudioTrack getAudioTrack(int length){

    if (audioTrack == null)
        audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC,
                mSampleRate, AudioFormat.CHANNEL_OUT_MONO,
                AudioFormat.ENCODING_PCM_16BIT, length,
                AudioTrack.MODE_STATIC);

    return audioTrack;
  }

  private double sine(int x, double frequencies){
    return Math.sin(  2*Math.PI * x * frequencies);
  }

  void playTrack(byte[] generatedSnd){
    getAudioTrack(generatedSnd.length)
            .write(generatedSnd, 0, generatedSnd.length);
    audioTrack.play();
  }

}

2

vedere questa utile libreria

https://github.com/karlotoy/perfectTune

è facile da usare

aggiungilo alle tue dipendenze

 compile 'com.github.karlotoy:perfectTune:1.0.2'

E lo usi in questo modo:

PerfectTune perfectTune = new PerfectTune();
perfectTune.setTuneFreq(desire_freq);
perfectTune.playTune();

per interrompere la melodia:

perfectTune.stopTune();

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.