Come posso calcolare la distanza tra due punti specificati da latitudine e longitudine?
Per chiarimenti, vorrei la distanza in chilometri; i punti usano il sistema WGS84 e mi piacerebbe capire la precisione relativa degli approcci disponibili.
Come posso calcolare la distanza tra due punti specificati da latitudine e longitudine?
Per chiarimenti, vorrei la distanza in chilometri; i punti usano il sistema WGS84 e mi piacerebbe capire la precisione relativa degli approcci disponibili.
Risposte:
Questo link potrebbe esserti utile, in quanto descrive in dettaglio l'uso della formula Haversine per calcolare la distanza.
Estratto:
Questo script [in Javascript] calcola le distanze del grande cerchio tra i due punti - cioè la distanza più breve sulla superficie terrestre - usando la formula "Haversine".
function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2) {
var R = 6371; // Radius of the earth in km
var dLat = deg2rad(lat2-lat1); // deg2rad below
var dLon = deg2rad(lon2-lon1);
var a =
Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2)
;
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c; // Distance in km
return d;
}
function deg2rad(deg) {
return deg * (Math.PI/180)
}
Math.atan2(Math.sqrt(a), Math.sqrt(1-a))
posto di Math.asin(Math.sqrt(h))
, quale sarebbe l'implementazione diretta della formula che utilizza l'articolo di Wikipedia? È più efficiente e / o numericamente stabile?
(sin(x))²
uguale(sin(-x))²
Avevo bisogno di calcolare molte distanze tra i punti per il mio progetto, quindi sono andato avanti e ho cercato di ottimizzare il codice, che ho trovato qui. In media in diversi browser la mia nuova implementazione viene eseguita 2 volte più veloce della risposta più votata.
function distance(lat1, lon1, lat2, lon2) {
var p = 0.017453292519943295; // Math.PI / 180
var c = Math.cos;
var a = 0.5 - c((lat2 - lat1) * p)/2 +
c(lat1 * p) * c(lat2 * p) *
(1 - c((lon2 - lon1) * p))/2;
return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}
Puoi giocare con il mio jsPerf e vedere i risultati qui .
Di recente ho dovuto fare lo stesso in Python, quindi ecco un'implementazione di Python :
from math import cos, asin, sqrt, pi
def distance(lat1, lon1, lat2, lon2):
p = pi/180
a = 0.5 - cos((lat2-lat1)*p)/2 + cos(lat1*p) * cos(lat2*p) * (1-cos((lon2-lon1)*p))/2
return 12742 * asin(sqrt(a)) #2*R*asin...
E per completezza: Haversine su wiki.
// 2 * R; R = 6371 km
significa? e l'attuale metodo fornisce una risposta in km o miglia? necessita di una migliore documentazione. Grazie
Ecco un'implementazione C #:
static class DistanceAlgorithm
{
const double PIx = 3.141592653589793;
const double RADIUS = 6378.16;
/// <summary>
/// Convert degrees to Radians
/// </summary>
/// <param name="x">Degrees</param>
/// <returns>The equivalent in radians</returns>
public static double Radians(double x)
{
return x * PIx / 180;
}
/// <summary>
/// Calculate the distance between two places.
/// </summary>
/// <param name="lon1"></param>
/// <param name="lat1"></param>
/// <param name="lon2"></param>
/// <param name="lat2"></param>
/// <returns></returns>
public static double DistanceBetweenPlaces(
double lon1,
double lat1,
double lon2,
double lat2)
{
double dlon = Radians(lon2 - lon1);
double dlat = Radians(lat2 - lat1);
double a = (Math.Sin(dlat / 2) * Math.Sin(dlat / 2)) + Math.Cos(Radians(lat1)) * Math.Cos(Radians(lat2)) * (Math.Sin(dlon / 2) * Math.Sin(dlon / 2));
double angle = 2 * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1 - a));
return angle * RADIUS;
}
}
double dlon = Radians(lon2 - lon1);
edouble dlat = Radians(lat2 - lat1);
RADIUS
valore deve essere 6371 come nelle altre risposte?
Ecco un'implementazione Java della formula Haversine.
public final static double AVERAGE_RADIUS_OF_EARTH_KM = 6371;
public int calculateDistanceInKilometer(double userLat, double userLng,
double venueLat, double venueLng) {
double latDistance = Math.toRadians(userLat - venueLat);
double lngDistance = Math.toRadians(userLng - venueLng);
double a = Math.sin(latDistance / 2) * Math.sin(latDistance / 2)
+ Math.cos(Math.toRadians(userLat)) * Math.cos(Math.toRadians(venueLat))
* Math.sin(lngDistance / 2) * Math.sin(lngDistance / 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return (int) (Math.round(AVERAGE_RADIUS_OF_EARTH_KM * c));
}
Si noti che qui stiamo arrotondando la risposta al km più vicino.
6371000
come raggio della terra? (il raggio medio di terra è di 6371000 metri) o converti chilometri in metri dalla tua funzione?
0.621371
Grazie mille per tutto questo. Ho usato il seguente codice nella mia app per iPhone Objective-C:
const double PIx = 3.141592653589793;
const double RADIO = 6371; // Mean radius of Earth in Km
double convertToRadians(double val) {
return val * PIx / 180;
}
-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {
double dlon = convertToRadians(place2.longitude - place1.longitude);
double dlat = convertToRadians(place2.latitude - place1.latitude);
double a = ( pow(sin(dlat / 2), 2) + cos(convertToRadians(place1.latitude))) * cos(convertToRadians(place2.latitude)) * pow(sin(dlon / 2), 2);
double angle = 2 * asin(sqrt(a));
return angle * RADIO;
}
Latitudine e Longitudine sono in decimali. Non ho usato min () per la chiamata asin () poiché le distanze che sto usando sono così piccole che non lo richiedono.
Ha dato risposte errate fino a quando non ho passato i valori in Radianti - ora è praticamente lo stesso dei valori ottenuti dall'app Mappa di Apple :-)
Aggiornamento extra:
Se stai utilizzando iOS4 o versioni successive, Apple fornisce alcuni metodi per farlo in modo da ottenere le stesse funzionalità con:
-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {
MKMapPoint start, finish;
start = MKMapPointForCoordinate(place1);
finish = MKMapPointForCoordinate(place2);
return MKMetersBetweenMapPoints(start, finish) / 1000;
}
()
quella somma, ottengo 3869.75. Senza di loro, ottengo 3935.75, che è praticamente ciò che una ricerca web rivela.
Questa è una semplice funzione PHP che fornirà un'approssimazione molto ragionevole (margine di errore inferiore a +/- 1%).
<?php
function distance($lat1, $lon1, $lat2, $lon2) {
$pi80 = M_PI / 180;
$lat1 *= $pi80;
$lon1 *= $pi80;
$lat2 *= $pi80;
$lon2 *= $pi80;
$r = 6372.797; // mean radius of Earth in km
$dlat = $lat2 - $lat1;
$dlon = $lon2 - $lon1;
$a = sin($dlat / 2) * sin($dlat / 2) + cos($lat1) * cos($lat2) * sin($dlon / 2) * sin($dlon / 2);
$c = 2 * atan2(sqrt($a), sqrt(1 - $a));
$km = $r * $c;
//echo '<br/>'.$km;
return $km;
}
?>
Come detto prima; la terra NON è una sfera. È come un vecchio vecchio baseball con cui Mark McGwire ha deciso di esercitarsi - è pieno di ammaccature e dossi. I calcoli più semplici (come questo) lo trattano come una sfera.
Diversi metodi possono essere più o meno precisi a seconda di dove ti trovi in questo ovoide irregolare E quanto distanti i tuoi punti (più vicini sono, minore è il margine di errore assoluto). Più precisa è la tua aspettativa, più complessa è la matematica.
Per maggiori informazioni: distanza geografica Wikipedia
Pubblico qui il mio esempio di lavoro.
Elenca tutti i punti nella tabella con distanza tra un punto designato (usiamo un punto casuale - lat: 45.20327, long: 23.7806) meno di 50 KM, con latitudine e longitudine, in MySQL (i campi della tabella sono coord_lat e coord_long):
Elenco di tutti con DISTANZA <50, in chilometri (considerato raggio terrestre 6371 KM):
SELECT denumire, (6371 * acos( cos( radians(45.20327) ) * cos( radians( coord_lat ) ) * cos( radians( 23.7806 ) - radians(coord_long) ) + sin( radians(45.20327) ) * sin( radians(coord_lat) ) )) AS distanta
FROM obiective
WHERE coord_lat<>''
AND coord_long<>''
HAVING distanta<50
ORDER BY distanta desc
L'esempio sopra è stato testato in MySQL 5.0.95 e 5.5.16 (Linux).
Nell'altra risposta un'implementazione in r manca.
Il calcolo della distanza tra due punti è abbastanza semplice con la distm
funzione dal geosphere
pacchetto:
distm(p1, p2, fun = distHaversine)
dove:
p1 = longitude/latitude for point(s)
p2 = longitude/latitude for point(s)
# type of distance calculation
fun = distCosine / distHaversine / distVincentySphere / distVincentyEllipsoid
Poiché la terra non è perfettamente sferica, la formula Vincenty per gli ellissoidi è probabilmente il modo migliore per calcolare le distanze. Quindi nel geosphere
pacchetto che usi quindi:
distm(p1, p2, fun = distVincentyEllipsoid)
Ovviamente non devi necessariamente usare il geosphere
pacchetto, puoi anche calcolare la distanza in base R
con una funzione:
hav.dist <- function(long1, lat1, long2, lat2) {
R <- 6371
diff.long <- (long2 - long1)
diff.lat <- (lat2 - lat1)
a <- sin(diff.lat/2)^2 + cos(lat1) * cos(lat2) * sin(diff.long/2)^2
b <- 2 * asin(pmin(1, sqrt(a)))
d = R * b
return(d)
}
L'haversine è sicuramente una buona formula per la maggior parte dei casi, altre risposte lo includono già, quindi non ho intenzione di occupare lo spazio. Ma è importante notare che non importa quale formula viene utilizzata (sì, non solo una). A causa della vasta gamma di precisione possibile e del tempo di calcolo richiesto. La scelta della formula richiede un po 'più di pensiero di una semplice risposta senza sforzo.
Questo post di una persona della NASA è il migliore che ho trovato discutendo delle opzioni
http://www.cs.nyu.edu/visual/home/proj/tiger/gisfaq.html
Ad esempio, se stai solo ordinando le righe per distanza in un raggio di 100 miglia. La formula della terra piatta sarà molto più veloce di quella di haversine.
HalfPi = 1.5707963;
R = 3956; /* the radius gives you the measurement unit*/
a = HalfPi - latoriginrad;
b = HalfPi - latdestrad;
u = a * a + b * b;
v = - 2 * a * b * cos(longdestrad - longoriginrad);
c = sqrt(abs(u + v));
return R * c;
Nota che c'è solo un coseno e una radice quadrata. Vs 9 di loro sulla formula Haversine.
È possibile utilizzare la build in CLLocationDistance per calcolare questo:
CLLocation *location1 = [[CLLocation alloc] initWithLatitude:latitude1 longitude:longitude1];
CLLocation *location2 = [[CLLocation alloc] initWithLatitude:latitude2 longitude:longitude2];
[self distanceInMetersFromLocation:location1 toLocation:location2]
- (int)distanceInMetersFromLocation:(CLLocation*)location1 toLocation:(CLLocation*)location2 {
CLLocationDistance distanceInMeters = [location1 distanceFromLocation:location2];
return distanceInMeters;
}
Nel tuo caso, se vuoi chilometri dividi solo per 1000.
Non mi piace aggiungere ancora un'altra risposta, ma l'API di Google Maps v.3 ha una geometria sferica (e altro). Dopo aver convertito il tuo WGS84 in gradi decimali puoi farlo:
<script src="http://maps.google.com/maps/api/js?sensor=false&libraries=geometry" type="text/javascript"></script>
distance = google.maps.geometry.spherical.computeDistanceBetween(
new google.maps.LatLng(fromLat, fromLng),
new google.maps.LatLng(toLat, toLng));
Nessuna parola su quanto siano accurati i calcoli di Google o persino quale modello viene utilizzato (anche se dice "sferico" piuttosto che "geoide". A proposito, la distanza della "linea retta" sarà ovviamente diversa dalla distanza se si viaggia sulla superficie della terra che è ciò che tutti sembrano presumere.
L'implementazione del pitone L'origine è il centro dei contigui Stati Uniti.
from haversine import haversine
origin = (39.50, 98.35)
paris = (48.8567, 2.3508)
haversine(origin, paris, miles=True)
Per ottenere la risposta in chilometri è sufficiente impostare miglia = falso.
Potrebbe esserci una soluzione più semplice e più corretta: il perimetro della terra è di 40.000 Km all'equatore, circa 37.000 nel ciclo di Greenwich (o di qualsiasi longitudine). Così:
pythagoras = function (lat1, lon1, lat2, lon2) {
function sqr(x) {return x * x;}
function cosDeg(x) {return Math.cos(x * Math.PI / 180.0);}
var earthCyclePerimeter = 40000000.0 * cosDeg((lat1 + lat2) / 2.0);
var dx = (lon1 - lon2) * earthCyclePerimeter / 360.0;
var dy = 37000000.0 * (lat1 - lat2) / 360.0;
return Math.sqrt(sqr(dx) + sqr(dy));
};
Concordo sul fatto che dovrebbe essere messo a punto in quanto, io stesso ho detto che si tratta di un ellissoide, quindi il raggio da moltiplicare per il coseno varia. Ma è un po 'più preciso. Rispetto a Google Maps e ha ridotto l'errore in modo significativo.
Tutte le risposte di cui sopra presuppongono che la terra sia una sfera. Tuttavia, un'approssimazione più accurata sarebbe quella di uno sferoide oblato.
a= 6378.137#equitorial radius in km
b= 6356.752#polar radius in km
def Distance(lat1, lons1, lat2, lons2):
lat1=math.radians(lat1)
lons1=math.radians(lons1)
R1=(((((a**2)*math.cos(lat1))**2)+(((b**2)*math.sin(lat1))**2))/((a*math.cos(lat1))**2+(b*math.sin(lat1))**2))**0.5 #radius of earth at lat1
x1=R*math.cos(lat1)*math.cos(lons1)
y1=R*math.cos(lat1)*math.sin(lons1)
z1=R*math.sin(lat1)
lat2=math.radians(lat2)
lons2=math.radians(lons2)
R1=(((((a**2)*math.cos(lat2))**2)+(((b**2)*math.sin(lat2))**2))/((a*math.cos(lat2))**2+(b*math.sin(lat2))**2))**0.5 #radius of earth at lat2
x2=R*math.cos(lat2)*math.cos(lons2)
y2=R*math.cos(lat2)*math.sin(lons2)
z2=R*math.sin(lat2)
return ((x1-x2)**2+(y1-y2)**2+(z1-z2)**2)**0.5
Ecco l'implementazione SQL per calcolare la distanza in km,
SELECT UserId, ( 3959 * acos( cos( radians( your latitude here ) ) * cos( radians(latitude) ) *
cos( radians(longitude) - radians( your longitude here ) ) + sin( radians( your latitude here ) ) *
sin( radians(latitude) ) ) ) AS distance FROM user HAVING
distance < 5 ORDER BY distance LIMIT 0 , 5;
Per ulteriori dettagli sull'implementazione programmando langugage, puoi semplicemente leggere lo script php qui fornito
Ecco un'implementazione dattiloscritta della formula di Haversine
static getDistanceFromLatLonInKm(lat1: number, lon1: number, lat2: number, lon2: number): number {
var deg2Rad = deg => {
return deg * Math.PI / 180;
}
var r = 6371; // Radius of the earth in km
var dLat = deg2Rad(lat2 - lat1);
var dLon = deg2Rad(lon2 - lon1);
var a =
Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(deg2Rad(lat1)) * Math.cos(deg2Rad(lat2)) *
Math.sin(dLon / 2) * Math.sin(dLon / 2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
var d = r * c; // Distance in km
return d;
}
Come sottolineato, un calcolo accurato dovrebbe tener conto del fatto che la terra non è una sfera perfetta. Ecco alcuni confronti dei vari algoritmi offerti qui:
geoDistance(50,5,58,3)
Haversine: 899 km
Maymenn: 833 km
Keerthana: 897 km
google.maps.geometry.spherical.computeDistanceBetween(): 900 km
geoDistance(50,5,-58,-3)
Haversine: 12030 km
Maymenn: 11135 km
Keerthana: 10310 km
google.maps.geometry.spherical.computeDistanceBetween(): 12044 km
geoDistance(.05,.005,.058,.003)
Haversine: 0.9169 km
Maymenn: 0.851723 km
Keerthana: 0.917964 km
google.maps.geometry.spherical.computeDistanceBetween(): 0.917964 km
geoDistance(.05,80,.058,80.3)
Haversine: 33.37 km
Maymenn: 33.34 km
Keerthana: 33.40767 km
google.maps.geometry.spherical.computeDistanceBetween(): 33.40770 km
Su piccole distanze, l'algoritmo di Keerthana sembra coincidere con quello di Google Maps. Google Maps non sembra seguire alcun semplice algoritmo, suggerendo che qui potrebbe essere il metodo più accurato.
Comunque, ecco un'implementazione Javascript dell'algoritmo di Keerthana:
function geoDistance(lat1, lng1, lat2, lng2){
const a = 6378.137; // equitorial radius in km
const b = 6356.752; // polar radius in km
var sq = x => (x*x);
var sqr = x => Math.sqrt(x);
var cos = x => Math.cos(x);
var sin = x => Math.sin(x);
var radius = lat => sqr((sq(a*a*cos(lat))+sq(b*b*sin(lat)))/(sq(a*cos(lat))+sq(b*sin(lat))));
lat1 = lat1 * Math.PI / 180;
lng1 = lng1 * Math.PI / 180;
lat2 = lat2 * Math.PI / 180;
lng2 = lng2 * Math.PI / 180;
var R1 = radius(lat1);
var x1 = R1*cos(lat1)*cos(lng1);
var y1 = R1*cos(lat1)*sin(lng1);
var z1 = R1*sin(lat1);
var R2 = radius(lat2);
var x2 = R2*cos(lat2)*cos(lng2);
var y2 = R2*cos(lat2)*sin(lng2);
var z2 = R2*sin(lat2);
return sqr(sq(x1-x2)+sq(y1-y2)+sq(z1-z2));
}
Questo script [in PHP] calcola le distanze tra i due punti.
public static function getDistanceOfTwoPoints($source, $dest, $unit='K') {
$lat1 = $source[0];
$lon1 = $source[1];
$lat2 = $dest[0];
$lon2 = $dest[1];
$theta = $lon1 - $lon2;
$dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) + cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
$dist = acos($dist);
$dist = rad2deg($dist);
$miles = $dist * 60 * 1.1515;
$unit = strtoupper($unit);
if ($unit == "K") {
return ($miles * 1.609344);
}
else if ($unit == "M")
{
return ($miles * 1.609344 * 1000);
}
else if ($unit == "N") {
return ($miles * 0.8684);
}
else {
return $miles;
}
}
Implementazione Java secondo la formula Haversine
double calculateDistance(double latPoint1, double lngPoint1,
double latPoint2, double lngPoint2) {
if(latPoint1 == latPoint2 && lngPoint1 == lngPoint2) {
return 0d;
}
final double EARTH_RADIUS = 6371.0; //km value;
//converting to radians
latPoint1 = Math.toRadians(latPoint1);
lngPoint1 = Math.toRadians(lngPoint1);
latPoint2 = Math.toRadians(latPoint2);
lngPoint2 = Math.toRadians(lngPoint2);
double distance = Math.pow(Math.sin((latPoint2 - latPoint1) / 2.0), 2)
+ Math.cos(latPoint1) * Math.cos(latPoint2)
* Math.pow(Math.sin((lngPoint2 - lngPoint1) / 2.0), 2);
distance = 2.0 * EARTH_RADIUS * Math.asin(Math.sqrt(distance));
return distance; //km value
}
Per calcolare la distanza tra due punti su una sfera è necessario eseguire il calcolo del Grande Cerchio .
Esistono diverse librerie C / C ++ per aiutare con la proiezione delle mappe su MapTools se è necessario riproiettare le distanze su una superficie piana. Per fare ciò avrai bisogno della stringa di proiezione dei vari sistemi di coordinate.
È inoltre possibile trovare MapWindow uno strumento utile per visualizzare i punti. Anche come open source è una guida utile su come utilizzare la libreria proj.dll, che sembra essere la libreria di proiezione open source principale.
Ecco l'implementazione della risposta accettata portata su Java nel caso qualcuno ne abbia bisogno.
package com.project529.garage.util;
/**
* Mean radius.
*/
private static double EARTH_RADIUS = 6371;
/**
* Returns the distance between two sets of latitudes and longitudes in meters.
* <p/>
* Based from the following JavaScript SO answer:
* http://stackoverflow.com/questions/27928/calculate-distance-between-two-latitude-longitude-points-haversine-formula,
* which is based on https://en.wikipedia.org/wiki/Haversine_formula (error rate: ~0.55%).
*/
public double getDistanceBetween(double lat1, double lon1, double lat2, double lon2) {
double dLat = toRadians(lat2 - lat1);
double dLon = toRadians(lon2 - lon1);
double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(toRadians(lat1)) * Math.cos(toRadians(lat2)) *
Math.sin(dLon / 2) * Math.sin(dLon / 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
double d = EARTH_RADIUS * c;
return d;
}
public double toRadians(double degrees) {
return degrees * (Math.PI / 180);
}
Ecco l'implementazione VB.NET, questa implementazione ti darà il risultato in KM o Miglia in base al valore Enum che passi.
Public Enum DistanceType
Miles
KiloMeters
End Enum
Public Structure Position
Public Latitude As Double
Public Longitude As Double
End Structure
Public Class Haversine
Public Function Distance(Pos1 As Position,
Pos2 As Position,
DistType As DistanceType) As Double
Dim R As Double = If((DistType = DistanceType.Miles), 3960, 6371)
Dim dLat As Double = Me.toRadian(Pos2.Latitude - Pos1.Latitude)
Dim dLon As Double = Me.toRadian(Pos2.Longitude - Pos1.Longitude)
Dim a As Double = Math.Sin(dLat / 2) * Math.Sin(dLat / 2) + Math.Cos(Me.toRadian(Pos1.Latitude)) * Math.Cos(Me.toRadian(Pos2.Latitude)) * Math.Sin(dLon / 2) * Math.Sin(dLon / 2)
Dim c As Double = 2 * Math.Asin(Math.Min(1, Math.Sqrt(a)))
Dim result As Double = R * c
Return result
End Function
Private Function toRadian(val As Double) As Double
Return (Math.PI / 180) * val
End Function
End Class
Ho ridotto il calcolo semplificando la formula.
Eccolo in Ruby:
include Math
earth_radius_mi = 3959
radians = lambda { |deg| deg * PI / 180 }
coord_radians = lambda { |c| { :lat => radians[c[:lat]], :lng => radians[c[:lng]] } }
# from/to = { :lat => (latitude_in_degrees), :lng => (longitude_in_degrees) }
def haversine_distance(from, to)
from, to = coord_radians[from], coord_radians[to]
cosines_product = cos(to[:lat]) * cos(from[:lat]) * cos(from[:lng] - to[:lng])
sines_product = sin(to[:lat]) * sin(from[:lat])
return earth_radius_mi * acos(cosines_product + sines_product)
end
function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2,units) {
var R = 6371; // Radius of the earth in km
var dLat = deg2rad(lat2-lat1); // deg2rad below
var dLon = deg2rad(lon2-lon1);
var a =
Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2)
;
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
var miles = d / 1.609344;
if ( units == 'km' ) {
return d;
} else {
return miles;
}}
La soluzione di Chuck, valida anche per miglia.
Ecco la mia implementazione Java per la distanza di calcolo in gradi decimali dopo alcune ricerche. Ho usato il raggio medio del mondo (da Wikipedia) in km. Se si desidera ottenere miglia risultanti, utilizzare il raggio mondiale in miglia.
public static double distanceLatLong2(double lat1, double lng1, double lat2, double lng2)
{
double earthRadius = 6371.0d; // KM: use mile here if you want mile result
double dLat = toRadian(lat2 - lat1);
double dLng = toRadian(lng2 - lng1);
double a = Math.pow(Math.sin(dLat/2), 2) +
Math.cos(toRadian(lat1)) * Math.cos(toRadian(lat2)) *
Math.pow(Math.sin(dLng/2), 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return earthRadius * c; // returns result kilometers
}
public static double toRadian(double degrees)
{
return (degrees * Math.PI) / 180.0d;
}
In Mysql usare la seguente funzione passare i parametri come usando POINT(LONG,LAT)
CREATE FUNCTION `distance`(a POINT, b POINT)
RETURNS double
DETERMINISTIC
BEGIN
RETURN
GLength( LineString(( PointFromWKB(a)), (PointFromWKB(b)))) * 100000; -- To Make the distance in meters
END;
function getDistanceFromLatLonInKm(position1, position2) {
"use strict";
var deg2rad = function (deg) { return deg * (Math.PI / 180); },
R = 6371,
dLat = deg2rad(position2.lat - position1.lat),
dLng = deg2rad(position2.lng - position1.lng),
a = Math.sin(dLat / 2) * Math.sin(dLat / 2)
+ Math.cos(deg2rad(position1.lat))
* Math.cos(deg2rad(position1.lat))
* Math.sin(dLng / 2) * Math.sin(dLng / 2),
c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return R * c;
}
console.log(getDistanceFromLatLonInKm(
{lat: 48.7931459, lng: 1.9483572},
{lat: 48.827167, lng: 2.2459745}
));
ecco un esempio in postgres sql (in km, per la versione in miglia, sostituire 1.609344 con la versione 0.8684)
CREATE OR REPLACE FUNCTION public.geodistance(alat float, alng float, blat
float, blng float)
RETURNS float AS
$BODY$
DECLARE
v_distance float;
BEGIN
v_distance = asin( sqrt(
sin(radians(blat-alat)/2)^2
+ (
(sin(radians(blng-alng)/2)^2) *
cos(radians(alat)) *
cos(radians(blat))
)
)
) * cast('7926.3352' as float) * cast('1.609344' as float) ;
RETURN v_distance;
END
$BODY$
language plpgsql VOLATILE SECURITY DEFINER;
alter function geodistance(alat float, alng float, blat float, blng float)
owner to postgres;
Ecco un altro codice convertito in Ruby :
include Math
#Note: from/to = [lat, long]
def get_distance_in_km(from, to)
radians = lambda { |deg| deg * Math.PI / 180 }
radius = 6371 # Radius of the earth in kilometer
dLat = radians[to[0]-from[0]]
dLon = radians[to[1]-from[1]]
cosines_product = Math.sin(dLat/2) * Math.sin(dLat/2) + Math.cos(radians[from[0]]) * Math.cos(radians[to[1]]) * Math.sin(dLon/2) * Math.sin(dLon/2)
c = 2 * Math.atan2(Math.sqrt(cosines_product), Math.sqrt(1-cosines_product))
return radius * c # Distance in kilometer
end
c'è un buon esempio qui per calcolare la distanza con PHP http://www.geodatasource.com/developers/php :
function distance($lat1, $lon1, $lat2, $lon2, $unit) {
$theta = $lon1 - $lon2;
$dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) + cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
$dist = acos($dist);
$dist = rad2deg($dist);
$miles = $dist * 60 * 1.1515;
$unit = strtoupper($unit);
if ($unit == "K") {
return ($miles * 1.609344);
} else if ($unit == "N") {
return ($miles * 0.8684);
} else {
return $miles;
}
}