Voglio creare su DataFrame
con uno schema specificato in Scala. Ho provato a usare JSON read (intendo leggere file vuoti) ma non credo che sia la migliore pratica.
Voglio creare su DataFrame
con uno schema specificato in Scala. Ho provato a usare JSON read (intendo leggere file vuoti) ma non credo che sia la migliore pratica.
Risposte:
Supponiamo che tu voglia un data frame con il seguente schema:
root
|-- k: string (nullable = true)
|-- v: integer (nullable = false)
Devi semplicemente definire lo schema per un data frame e utilizzare empty RDD[Row]
:
import org.apache.spark.sql.types.{
StructType, StructField, StringType, IntegerType}
import org.apache.spark.sql.Row
val schema = StructType(
StructField("k", StringType, true) ::
StructField("v", IntegerType, false) :: Nil)
// Spark < 2.0
// sqlContext.createDataFrame(sc.emptyRDD[Row], schema)
spark.createDataFrame(sc.emptyRDD[Row], schema)
L'equivalente di PySpark è quasi identico:
from pyspark.sql.types import StructType, StructField, IntegerType, StringType
schema = StructType([
StructField("k", StringType(), True), StructField("v", IntegerType(), False)
])
# or df = sc.parallelize([]).toDF(schema)
# Spark < 2.0
# sqlContext.createDataFrame([], schema)
df = spark.createDataFrame([], schema)
Utilizzo di codificatori impliciti (solo Scala) con Product
tipi come Tuple
:
import spark.implicits._
Seq.empty[(String, Int)].toDF("k", "v")
o classe di casi:
case class KV(k: String, v: Int)
Seq.empty[KV].toDF
o
spark.emptyDataset[KV].toDF
A partire da Spark 2.0.0, puoi eseguire le seguenti operazioni.
Definiamo una Person
classe case:
scala> case class Person(id: Int, name: String)
defined class Person
Importa spark
SparkSession implicito Encoders
:
scala> import spark.implicits._
import spark.implicits._
E usa SparkSession per creare un vuoto Dataset[Person]
:
scala> spark.emptyDataset[Person]
res0: org.apache.spark.sql.Dataset[Person] = [id: int, name: string]
È inoltre possibile utilizzare uno schema "DSL" (vedere Funzioni di supporto per DataFrame in org.apache.spark.sql.ColumnName ).
scala> val id = $"id".int
id: org.apache.spark.sql.types.StructField = StructField(id,IntegerType,true)
scala> val name = $"name".string
name: org.apache.spark.sql.types.StructField = StructField(name,StringType,true)
scala> import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructType
scala> val mySchema = StructType(id :: name :: Nil)
mySchema: org.apache.spark.sql.types.StructType = StructType(StructField(id,IntegerType,true), StructField(name,StringType,true))
scala> import org.apache.spark.sql.Row
import org.apache.spark.sql.Row
scala> val emptyDF = spark.createDataFrame(sc.emptyRDD[Row], mySchema)
emptyDF: org.apache.spark.sql.DataFrame = [id: int, name: string]
scala> emptyDF.printSchema
root
|-- id: integer (nullable = true)
|-- name: string (nullable = true)
spark.emptyDataset
non esiste sul mio modulo, come si usa? ci sono alcuni (corretti) simili a (non corretti) val df = apache.spark.emptyDataset[RawData]
?
spark
è il valore che crei utilizzando SparkSession.builder
non parte del org.apache.spark
pacchetto. Ci sono due spark
nomi in uso. È ciò spark
che hai a disposizione spark-shell
immediatamente.
import scala.reflect.runtime.{universe => ru}
def createEmptyDataFrame[T: ru.TypeTag] =
hiveContext.createDataFrame(sc.emptyRDD[Row],
ScalaReflection.schemaFor(ru.typeTag[T].tpe).dataType.asInstanceOf[StructType]
)
case class RawData(id: String, firstname: String, lastname: String, age: Int)
val sourceDF = createEmptyDataFrame[RawData]
Qui puoi creare uno schema usando StructType in scala e passare l'RDD vuoto in modo da poter creare una tabella vuota. Il codice seguente è per lo stesso.
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql._
import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.types.BooleanType
import org.apache.spark.sql.types.LongType
import org.apache.spark.sql.types.StringType
//import org.apache.hadoop.hive.serde2.objectinspector.StructField
object EmptyTable extends App {
val conf = new SparkConf;
val sc = new SparkContext(conf)
//create sparksession object
val sparkSession = SparkSession.builder().enableHiveSupport().getOrCreate()
//Created schema for three columns
val schema = StructType(
StructField("Emp_ID", LongType, true) ::
StructField("Emp_Name", StringType, false) ::
StructField("Emp_Salary", LongType, false) :: Nil)
//Created Empty RDD
var dataRDD = sc.emptyRDD[Row]
//pass rdd and schema to create dataframe
val newDFSchema = sparkSession.createDataFrame(dataRDD, schema)
newDFSchema.createOrReplaceTempView("tempSchema")
sparkSession.sql("create table Finaltable AS select * from tempSchema")
}
Versione Java per creare un DataSet vuoto:
public Dataset<Row> emptyDataSet(){
SparkSession spark = SparkSession.builder().appName("Simple Application")
.config("spark.master", "local").getOrCreate();
Dataset<Row> emptyDataSet = spark.createDataFrame(new ArrayList<>(), getSchema());
return emptyDataSet;
}
public StructType getSchema() {
String schemaString = "column1 column2 column3 column4 column5";
List<StructField> fields = new ArrayList<>();
StructField indexField = DataTypes.createStructField("column0", DataTypes.LongType, true);
fields.add(indexField);
for (String fieldName : schemaString.split(" ")) {
StructField field = DataTypes.createStructField(fieldName, DataTypes.StringType, true);
fields.add(field);
}
StructType schema = DataTypes.createStructType(fields);
return schema;
}
A partire da Spark 2.4.3
val df = SparkSession.builder().getOrCreate().emptyDataFrame