Come filtrare un array da tutti gli elementi di un altro array


140


Mi piacerebbe capire il modo migliore per filtrare un array da tutti gli elementi di un altro . Ho provato con la funzione filtro, ma non mi viene in mente come dargli i valori che voglio rimuovere.
Qualcosa di simile a:

var array = [1,2,3,4];
var anotherOne = [2,4];
var filteredArray = array.filter(myCallback);
// filteredArray should now be [1,3]


function myCallBack(){
    return element ! filteredArray; 
    //which clearly can't work since we don't have the reference <,< 
}

nel caso in cui la funzione filtro non sia utile, come lo implementeresti?
Modifica: ho verificato la possibile domanda duplicata e potrebbe essere utile per coloro che comprendono facilmente javascript. La risposta verificata come buona rende le cose facili.


8
Passa l'altro array per filtrare il callback e usa il return arrTwo.indexOf(e) === -1; codice: var filteredArr = firstArr.filter(el => secondArr.indexOf(el) === -1);
Tushar


sono ordinate entrambe le matrici?
Nina Scholz,

l'array non è ordinato, inoltre, il secondo array ha un numero casuale di elementi.
Koop4,

Risposte:


145

È possibile utilizzare il thisparametro della filter()funzione per evitare di memorizzare l'array di filtri in una variabile globale.

var filtered = [1, 2, 3, 4].filter(
    function(e) {
      return this.indexOf(e) < 0;
    },
    [2, 4]
);
console.log(filtered);


Esso funziona magicamente. È possibile spostare la funzione all'esterno e chiamarla in un modo più comprensibile? Come: var filtered = [1,2,3,4] .filter (myfunct (), [2,4]);
Koop4,

1
Sicuro: var myFunct = function (e) {return this.indexOf (e) <0;}; var filtered = [1,2,3,4] .filter (myFunct, [2,4]);
Simon Ciao,

1
Ciò può essere ottenuto con l'espressione lambda in ES2016 o TypesScript?
Prabu,


Quando uso questo approccio, il secondo parametro di filtro non sta entrando nella mia funzione di this. thissembra sempre non definito ?! Strano
Qualcosa il

149

Vorrei fare come segue;

var arr = [1,2,3,4],
    brr = [2,4],
    res = arr.filter(f => !brr.includes(f));
console.log(res);


6
Stella del rock. Grazie, questo è stato incredibilmente utile per risolvere un problema leggermente diverso. Filtraggio di una matrice di oggetti in base a una matrice di valori in un componente di reazione: const filteredResults = this.state.cards.filter( result => !this.state.filterOut.includes(result.category) ) dove this.state.cards in una matrice di oggetti e this.state.filterOut è una matrice di valori che corrispondono alla chiave "categoria" negli oggetti che Volevo rimuovere.
Josh Pittman,

Lo so, è una risposta più vecchia, ma volevo semplicemente farti sapere che questa risposta mi piaceva molto di più e mi ha aiutato con uno dei miei problemi che ho avuto. È molto leggibile e quindi è stato più facile per me capire meglio il problema.
ak.leimrey,

1
include funziona solo da ES7. Se si utilizza ES6, utilizzare la soluzione accettata.
rudrasiva86,

39
var array = [1,2,3,4];
var anotherOne = [2,4];
var filteredArray = array.filter(myCallBack);

function myCallBack(el){
  return anotherOne.indexOf(el) < 0;
}

Nel callback, si controlla se ciascun valore di arrayè inanotherOne

https://jsfiddle.net/0tsyc1sx/

Se stai usando lodash.js, usa_.difference

filteredArray = _.difference(array, anotherOne);

dimostrazione

Se hai una matrice di oggetti:

var array = [{id :1, name :"test1"},{id :2, name :"test2"},{id :3, name :"test3"},{id :4, name :"test4"}];

var anotherOne = [{id :2, name :"test2"}, {id :4, name :"test4"}];

var filteredArray  = array.filter(function(array_el){
   return anotherOne.filter(function(anotherOne_el){
      return anotherOne_el.id == array_el.id;
   }).length == 0
});

Demo array di oggetti

Demo diff array di oggetti con lodash


Ciao, puoi estenderlo in una serie di oggetti? lo apprezzerò molto
Roel,

Stai usando lodash?
AshBringer,

No signore, preferisco seguire il metodo di callback
Roel,

beh signore, ha funzionato davvero, ma a parte l'id come posso filtrare l'altro nome?
Roel,

Hummm ... Devi solo cambiamento idin anotherOne_el.id == array_el.idcon qualunque sia la chiave che avete nel vostro proprio oggetto. Dovresti ottenere informazioni su matrici e oggetti in JavaScript, ti aiuterà a capire meglio la risposta
AshBringer

26

        /* Here's an example that uses (some) ES6 Javascript semantics to filter an object array by another object array. */

        // x = full dataset
        // y = filter dataset
        let x = [
            {"val": 1, "text": "a"},
            {"val": 2, "text": "b"},
            {"val": 3, "text": "c"},
            {"val": 4, "text": "d"},
            {"val": 5, "text": "e"}
            ],
            y = [
            {"val": 1, "text": "a"},
            {"val": 4, "text": "d"}               
            ];

        // Use map to get a simple array of "val" values. Ex: [1,4]
        let yFilter = y.map(itemY => { return itemY.val; });

        // Use filter and "not" includes to filter the full dataset by the filter dataset's val.
        let filteredX = x.filter(itemX => !yFilter.includes(itemX.val));

        // Print the result.
        console.log(filteredX);


Esattamente quello di cui avevo bisogno. Grazie
vikrantnegi il

12

Il codice seguente è il modo più semplice per filtrare un array rispetto a un altro array. Entrambi gli array possono contenere oggetti al loro posto anziché valori.

let array1 = [1, 3, 47, 1, 6, 7];
let array2 = [3, 6];
let filteredArray1 = array1.filter(el => array2.includes(el));
console.log(filteredArray1); 

Produzione: [3, 6]


8

Ci sono molte risposte alla tua domanda, ma non vedo nessuno che usa lambda expresion:

var array = [1,2,3,4];
var anotherOne = [2,4];
var filteredArray = array.filter(x => anotherOne.indexOf(x) < 0);

6

Tutte le soluzioni di cui sopra "funzionano", ma sono meno che ottimali per le prestazioni e affrontano il problema nello stesso modo che cerca in modo lineare tutte le voci in ciascun punto utilizzando Array.prototype.indexOf o Array.prototype.includes . Una soluzione molto più veloce (molto più veloce anche di una ricerca binaria per la maggior parte dei casi) sarebbe quella di ordinare gli array e saltare avanti come si procede come visto di seguito. Tuttavia, un aspetto negativo è che ciò richiede che tutte le voci dell'array siano numeri o stringhe. Inoltre, in alcuni rari casi la ricerca binaria può essere più veloce della ricerca lineare progressiva. Questi casi derivano dal fatto che la mia ricerca lineare progressiva ha una complessità di O (2n 1 + n 2 ) (solo O (n 1 + n 2 ) nella versione C / C ++ più veloce) (dove n 1 è l'array cercato e n 2 è l'array filtro), mentre la ricerca binaria ha una complessità di O (n 1 ceil (log 2 n 2 )) ( ceil = arrotondamento per eccesso - al soffitto ) e, infine, l'indiceOf di ricerca presenta una complessità altamente variabile tra O (n 1 ) e O (n 1 2 )n , con una media di O (n 1 ceil (n 2) ÷ 2)) . Pertanto, indexOf sarà solo il più veloce, in media, nei casi di{1,2} , {1,3} o {x, 1 | x∈N} . Tuttavia, questa non è ancora una rappresentazione perfetta dell'hardware moderno. IndexOf è ottimizzato nativamente nella massima misura possibile nella maggior parte dei browser moderni, il che lo rende molto soggetto alle leggi della predizione delle filiali . Pertanto, se facciamo lo stesso presupposto su indexOf di quanto facciamo con la ricerca progressiva lineare e binaria - che l'array è preordinato - quindi, secondo le statistiche elencate nel link, possiamo aspettarci circa una velocità 6x per IndexOf, spostando la sua complessità tra O (n 1(n 1 , n 2 ) uguale a ÷ 6) e O (n 1 n 2 ), con una media di 7 ÷ 12))O (n 1 ceil (n 2. Infine, si noti che la soluzione seguente non funzionerà mai con gli oggetti perché gli oggetti in JavaScript non possono essere confrontati dai puntatori in JavaScript.

function sortAnyArray(a,b) { return a>b ? 1 : (a===b ? 0 : -1); }
function sortIntArray(a,b) { return (a|0) - (b|0) |0; }
function fastFilter(array, handle) {
    var out=[], value=0;
    for (var i=0,  len=array.length|0; i < len; i=i+1|0)
        if (handle(value = array[i])) 
            out.push( value );
    return out;
}

const Math_clz32 = Math.clz32 || (function(log, LN2){
  return function(x) {
    return 31 - log(x >>> 0) / LN2 | 0; // the "| 0" acts like math.floor
  };
})(Math.log, Math.LN2);

/* USAGE:
  filterArrayByAnotherArray(
      [1,3,5],
      [2,3,4]
  ) yields [1, 5], and it can work with strings too
*/
function filterArrayByAnotherArray(searchArray, filterArray) {
    if (
        // NOTE: This does not check the whole array. But, if you know
        //        that there are only strings or numbers (not a mix of
        //        both) in the array, then this is a safe assumption.
        // Always use `==` with `typeof` because browsers can optimize
        //  the `==` into `===` (ONLY IN THIS CIRCUMSTANCE)
        typeof searchArray[0] == "number" &&
        typeof filterArray[0] == "number" &&
        (searchArray[0]|0) === searchArray[0] &&
        (filterArray[0]|0) === filterArray[0]
    ) {filterArray
        // if all entries in both arrays are integers
        searchArray.sort(sortIntArray);
        filterArray.sort(sortIntArray);
    } else {
        searchArray.sort(sortAnyArray);
        filterArray.sort(sortAnyArray);
    }
    var searchArrayLen = searchArray.length, filterArrayLen = filterArray.length;
    var progressiveLinearComplexity = ((searchArrayLen<<1) + filterArrayLen)>>>0
    var binarySearchComplexity= (searchArrayLen * (32-Math_clz32(filterArrayLen-1)))>>>0;
    // After computing the complexity, we can predict which algorithm will be the fastest
    var i = 0;
    if (progressiveLinearComplexity < binarySearchComplexity) {
        // Progressive Linear Search
        return fastFilter(searchArray, function(currentValue){
            while (filterArray[i] < currentValue) i=i+1|0;
            // +undefined = NaN, which is always false for <, avoiding an infinite loop
            return filterArray[i] !== currentValue;
        });
    } else {
        // Binary Search
        return fastFilter(
            searchArray,
            fastestBinarySearch(filterArray)
        );
    }
}

// see https://stackoverflow.com/a/44981570/5601591 for implementation
//  details about this binary search algorithm

function fastestBinarySearch(array){
  var initLen = (array.length|0) - 1 |0;
  
  const compGoto = Math_clz32(initLen) & 31;
  return function(sValue) {
    var len = initLen |0;
    switch (compGoto) {
      case 0:
        if (len & 0x80000000) {
          const nCB = len & 0x80000000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 1:
        if (len & 0x40000000) {
          const nCB = len & 0xc0000000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 2:
        if (len & 0x20000000) {
          const nCB = len & 0xe0000000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 3:
        if (len & 0x10000000) {
          const nCB = len & 0xf0000000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 4:
        if (len & 0x8000000) {
          const nCB = len & 0xf8000000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 5:
        if (len & 0x4000000) {
          const nCB = len & 0xfc000000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 6:
        if (len & 0x2000000) {
          const nCB = len & 0xfe000000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 7:
        if (len & 0x1000000) {
          const nCB = len & 0xff000000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 8:
        if (len & 0x800000) {
          const nCB = len & 0xff800000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 9:
        if (len & 0x400000) {
          const nCB = len & 0xffc00000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 10:
        if (len & 0x200000) {
          const nCB = len & 0xffe00000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 11:
        if (len & 0x100000) {
          const nCB = len & 0xfff00000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 12:
        if (len & 0x80000) {
          const nCB = len & 0xfff80000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 13:
        if (len & 0x40000) {
          const nCB = len & 0xfffc0000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 14:
        if (len & 0x20000) {
          const nCB = len & 0xfffe0000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 15:
        if (len & 0x10000) {
          const nCB = len & 0xffff0000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 16:
        if (len & 0x8000) {
          const nCB = len & 0xffff8000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 17:
        if (len & 0x4000) {
          const nCB = len & 0xffffc000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 18:
        if (len & 0x2000) {
          const nCB = len & 0xffffe000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 19:
        if (len & 0x1000) {
          const nCB = len & 0xfffff000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 20:
        if (len & 0x800) {
          const nCB = len & 0xfffff800;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 21:
        if (len & 0x400) {
          const nCB = len & 0xfffffc00;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 22:
        if (len & 0x200) {
          const nCB = len & 0xfffffe00;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 23:
        if (len & 0x100) {
          const nCB = len & 0xffffff00;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 24:
        if (len & 0x80) {
          const nCB = len & 0xffffff80;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 25:
        if (len & 0x40) {
          const nCB = len & 0xffffffc0;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 26:
        if (len & 0x20) {
          const nCB = len & 0xffffffe0;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 27:
        if (len & 0x10) {
          const nCB = len & 0xfffffff0;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 28:
        if (len & 0x8) {
          const nCB = len & 0xfffffff8;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 29:
        if (len & 0x4) {
          const nCB = len & 0xfffffffc;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 30:
        if (len & 0x2) {
          const nCB = len & 0xfffffffe;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 31:
        if (len & 0x1) {
          const nCB = len & 0xffffffff;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
    }
    // MODIFICATION: Instead of returning the index, this binary search
    //                instead returns whether something was found or not.
    if (array[len|0] !== sValue) {
       return true; // preserve the value at this index
    } else {
       return false; // eliminate the value at this index
    }
  };
}

Si prega di consultare il mio altro post qui per maggiori dettagli sull'algoritmo di ricerca binaria utilizzato

Se sei schizzinoso riguardo alle dimensioni del file (che rispetto), puoi sacrificare un po 'di prestazioni al fine di ridurre notevolmente le dimensioni del file e aumentare la manutenibilità.

function sortAnyArray(a,b) { return a>b ? 1 : (a===b ? 0 : -1); }
function sortIntArray(a,b) { return (a|0) - (b|0) |0; }
function fastFilter(array, handle) {
    var out=[], value=0;
    for (var i=0,  len=array.length|0; i < len; i=i+1|0)
        if (handle(value = array[i])) 
            out.push( value );
    return out;
}

/* USAGE:
  filterArrayByAnotherArray(
      [1,3,5],
      [2,3,4]
  ) yields [1, 5], and it can work with strings too
*/
function filterArrayByAnotherArray(searchArray, filterArray) {
    if (
        // NOTE: This does not check the whole array. But, if you know
        //        that there are only strings or numbers (not a mix of
        //        both) in the array, then this is a safe assumption.
        typeof searchArray[0] == "number" &&
        typeof filterArray[0] == "number" &&
        (searchArray[0]|0) === searchArray[0] &&
        (filterArray[0]|0) === filterArray[0]
    ) {
        // if all entries in both arrays are integers
        searchArray.sort(sortIntArray);
        filterArray.sort(sortIntArray);
    } else {
        searchArray.sort(sortAnyArray);
        filterArray.sort(sortAnyArray);
    }
    // Progressive Linear Search
    var i = 0;
    return fastFilter(searchArray, function(currentValue){
        while (filterArray[i] < currentValue) i=i+1|0;
        // +undefined = NaN, which is always false for <, avoiding an infinite loop
        return filterArray[i] !== currentValue;
    });
}

Per dimostrare la differenza di velocità, esaminiamo alcuni JSPerf. Per filtrare un array di 16 elementi , la ricerca binaria è circa il 17% più veloce di indexOf mentre filterArrayByAnotherArray è circa il 93% più veloce di indexOf. Per filtrare un array di 256 elementi , la ricerca binaria è circa il 291% più veloce di indexOf mentre filterArrayByAnotherArray è circa il 353% più veloce di indexOf. Per filtrare un array di 4096 elementi , la ricerca binaria è più veloce del 2655% circa rispetto a indexOf mentre filterArrayByAnotherArray è più veloce del 4627% circa rispetto a indexOf.

Filtro inverso (come un gate AND)

La sezione precedente forniva il codice per prendere l'array A e l'array B e rimuovere tutti gli elementi da A che esistono in B:

filterArrayByAnotherArray(
    [1,3,5],
    [2,3,4]
);
// yields [1, 5]

La prossima sezione fornirà il codice per il filtro inverso, in cui rimuoviamo tutti gli elementi da A che NON esistono in B. Questo processo è funzionalmente equivalente a conservare solo gli elementi comuni ad A e B, come una porta AND:

reverseFilterArrayByAnotherArray(
    [1,3,5],
    [2,3,4]
);
// yields [3]

Ecco il codice per il filtro inverso:

function sortAnyArray(a,b) { return a>b ? 1 : (a===b ? 0 : -1); }
function sortIntArray(a,b) { return (a|0) - (b|0) |0; }
function fastFilter(array, handle) {
    var out=[], value=0;
    for (var i=0,  len=array.length|0; i < len; i=i+1|0)
        if (handle(value = array[i])) 
            out.push( value );
    return out;
}

const Math_clz32 = Math.clz32 || (function(log, LN2){
  return function(x) {
    return 31 - log(x >>> 0) / LN2 | 0; // the "| 0" acts like math.floor
  };
})(Math.log, Math.LN2);

/* USAGE:
  reverseFilterArrayByAnotherArray(
      [1,3,5],
      [2,3,4]
  ) yields [3], and it can work with strings too
*/
function reverseFilterArrayByAnotherArray(searchArray, filterArray) {
    if (
        // NOTE: This does not check the whole array. But, if you know
        //        that there are only strings or numbers (not a mix of
        //        both) in the array, then this is a safe assumption.
        // Always use `==` with `typeof` because browsers can optimize
        //  the `==` into `===` (ONLY IN THIS CIRCUMSTANCE)
        typeof searchArray[0] == "number" &&
        typeof filterArray[0] == "number" &&
        (searchArray[0]|0) === searchArray[0] &&
        (filterArray[0]|0) === filterArray[0]
    ) {filterArray
        // if all entries in both arrays are integers
        searchArray.sort(sortIntArray);
        filterArray.sort(sortIntArray);
    } else {
        searchArray.sort(sortAnyArray);
        filterArray.sort(sortAnyArray);
    }
    var searchArrayLen = searchArray.length, filterArrayLen = filterArray.length;
    var progressiveLinearComplexity = ((searchArrayLen<<1) + filterArrayLen)>>>0
    var binarySearchComplexity= (searchArrayLen * (32-Math_clz32(filterArrayLen-1)))>>>0;
    // After computing the complexity, we can predict which algorithm will be the fastest
    var i = 0;
    if (progressiveLinearComplexity < binarySearchComplexity) {
        // Progressive Linear Search
        return fastFilter(searchArray, function(currentValue){
            while (filterArray[i] < currentValue) i=i+1|0;
            // +undefined = NaN, which is always false for <, avoiding an infinite loop
            // For reverse filterning, I changed !== to ===
            return filterArray[i] === currentValue;
        });
    } else {
        // Binary Search
        return fastFilter(
            searchArray,
            inverseFastestBinarySearch(filterArray)
        );
    }
}

// see https://stackoverflow.com/a/44981570/5601591 for implementation
//  details about this binary search algorithim

function inverseFastestBinarySearch(array){
  var initLen = (array.length|0) - 1 |0;
  
  const compGoto = Math_clz32(initLen) & 31;
  return function(sValue) {
    var len = initLen |0;
    switch (compGoto) {
      case 0:
        if (len & 0x80000000) {
          const nCB = len & 0x80000000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 1:
        if (len & 0x40000000) {
          const nCB = len & 0xc0000000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 2:
        if (len & 0x20000000) {
          const nCB = len & 0xe0000000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 3:
        if (len & 0x10000000) {
          const nCB = len & 0xf0000000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 4:
        if (len & 0x8000000) {
          const nCB = len & 0xf8000000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 5:
        if (len & 0x4000000) {
          const nCB = len & 0xfc000000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 6:
        if (len & 0x2000000) {
          const nCB = len & 0xfe000000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 7:
        if (len & 0x1000000) {
          const nCB = len & 0xff000000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 8:
        if (len & 0x800000) {
          const nCB = len & 0xff800000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 9:
        if (len & 0x400000) {
          const nCB = len & 0xffc00000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 10:
        if (len & 0x200000) {
          const nCB = len & 0xffe00000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 11:
        if (len & 0x100000) {
          const nCB = len & 0xfff00000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 12:
        if (len & 0x80000) {
          const nCB = len & 0xfff80000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 13:
        if (len & 0x40000) {
          const nCB = len & 0xfffc0000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 14:
        if (len & 0x20000) {
          const nCB = len & 0xfffe0000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 15:
        if (len & 0x10000) {
          const nCB = len & 0xffff0000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 16:
        if (len & 0x8000) {
          const nCB = len & 0xffff8000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 17:
        if (len & 0x4000) {
          const nCB = len & 0xffffc000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 18:
        if (len & 0x2000) {
          const nCB = len & 0xffffe000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 19:
        if (len & 0x1000) {
          const nCB = len & 0xfffff000;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 20:
        if (len & 0x800) {
          const nCB = len & 0xfffff800;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 21:
        if (len & 0x400) {
          const nCB = len & 0xfffffc00;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 22:
        if (len & 0x200) {
          const nCB = len & 0xfffffe00;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 23:
        if (len & 0x100) {
          const nCB = len & 0xffffff00;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 24:
        if (len & 0x80) {
          const nCB = len & 0xffffff80;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 25:
        if (len & 0x40) {
          const nCB = len & 0xffffffc0;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 26:
        if (len & 0x20) {
          const nCB = len & 0xffffffe0;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 27:
        if (len & 0x10) {
          const nCB = len & 0xfffffff0;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 28:
        if (len & 0x8) {
          const nCB = len & 0xfffffff8;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 29:
        if (len & 0x4) {
          const nCB = len & 0xfffffffc;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 30:
        if (len & 0x2) {
          const nCB = len & 0xfffffffe;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
      case 31:
        if (len & 0x1) {
          const nCB = len & 0xffffffff;
          len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
        }
    }
    // MODIFICATION: Instead of returning the index, this binary search
    //                instead returns whether something was found or not.
    // For reverse filterning, I swapped true with false and vice-versa
    if (array[len|0] !== sValue) {
       return false; // preserve the value at this index
    } else {
       return true; // eliminate the value at this index
    }
  };
}

Per la versione più lenta più piccola del codice di filtro inverso, vedere di seguito.

function sortAnyArray(a,b) { return a>b ? 1 : (a===b ? 0 : -1); }
function sortIntArray(a,b) { return (a|0) - (b|0) |0; }
function fastFilter(array, handle) {
    var out=[], value=0;
    for (var i=0,  len=array.length|0; i < len; i=i+1|0)
        if (handle(value = array[i])) 
            out.push( value );
    return out;
}

/* USAGE:
  reverseFilterArrayByAnotherArray(
      [1,3,5],
      [2,3,4]
  ) yields [3], and it can work with strings too
*/
function reverseFilterArrayByAnotherArray(searchArray, filterArray) {
    if (
        // NOTE: This does not check the whole array. But, if you know
        //        that there are only strings or numbers (not a mix of
        //        both) in the array, then this is a safe assumption.
        typeof searchArray[0] == "number" &&
        typeof filterArray[0] == "number" &&
        (searchArray[0]|0) === searchArray[0] &&
        (filterArray[0]|0) === filterArray[0]
    ) {
        // if all entries in both arrays are integers
        searchArray.sort(sortIntArray);
        filterArray.sort(sortIntArray);
    } else {
        searchArray.sort(sortAnyArray);
        filterArray.sort(sortAnyArray);
    }
    // Progressive Linear Search
    var i = 0;
    return fastFilter(searchArray, function(currentValue){
        while (filterArray[i] < currentValue) i=i+1|0;
        // +undefined = NaN, which is always false for <, avoiding an infinite loop
        // For reverse filter, I changed !== to ===
        return filterArray[i] === currentValue;
    });
}

4
Grazie per la risposta, sono sicuro che prima o poi sarà utile per qualcuno, anche se dovrebbe essere usato in casi limite (IE solo quando si presentano problemi di prestazioni). In tutti gli altri casi, suggerirei di utilizzare la versione mantenibile / leggibile.
Koop4,

1
@JackGiffin Penso che per leggibile significhi che sia gestibile e veloce da leggere e comprendere dallo sviluppatore web medio, per quando è necessario un cambiamento o una comprensione semplice. Ottima soluzione, non solo per la maggior parte dei casi.
zardilior,

1
@JackGiffin l'ottimizzazione precoce è una delle cose peggiori per i progetti, le prestazioni dovrebbero essere applicate in generale ai modi, scrivere codice efficiente, se abbastanza semplice, nel senso che non scrivere direttamente attraverso un codice errato e quando l'ottimizzazione è necessaria perché le prestazioni non soddisfano i requisiti . Quindi una persona come te dovrebbe lavorare ottimizzando altri progetti che richiedono quell'abilità derivata dall'ossessione. Spero che aiuti :)
zardilior,

1
@zardilior Aiuta davvero. Grazie mille per il tuo consiglio zardilior. Lo prenderò a cuore e agirò su di esso.
Jack Giffin,

1
@JackGiffin felice di essere al servizio
zardilior

3

L'OA può anche essere implementato in ES6 come segue

ES6:

 const filtered = [1, 2, 3, 4].filter(e => {
    return this.indexOf(e) < 0;
  },[2, 4]);

Al di fuori della sintassi della freccia, quale vantaggio ES6 ha questa soluzione per quanto riguarda il filtraggio?
Carl Edwards,


1

È possibile impostare la funzione filtro in modo da scorrere sull'array di filtri.

var arr = [1, 2, 3 ,4 ,5, 6, 7];
var filter = [4, 5, 6];

var filtered = arr.filter(
  function(val) {
    for (var i = 0; i < filter.length; i++) {
      if (val == filter[i]) {
        return false;
      }
    }
    return true;
  }
); 

1

È possibile utilizzare il filtro e quindi per la funzione di filtro utilizzare una riduzione dell'array di filtri che verifica e restituisce true quando trova una corrispondenza, quindi invertire al ritorno (!). La funzione filtro viene chiamata una volta per elemento nell'array. Non stai facendo un confronto di nessuno degli elementi nella funzione nel tuo post.

var a1 = [1, 2, 3, 4],
  a2 = [2, 3];

var filtered = a1.filter(function(x) {
  return !a2.reduce(function(y, z) {
    return x == y || x == z || y == true;
  })
});

document.write(filtered);


1

var arr1= [1,2,3,4];
var arr2=[2,4]

function fil(value){
return value !=arr2[0] &&  value != arr2[1]
}

document.getElementById("p").innerHTML= arr1.filter(fil)
<!DOCTYPE html> 
<html> 
<head> 
</head>
<body>
<p id="p"></p>


Grazie, funziona, ma preferirei mantenere l'ambito locale. Anche arr2 ha un numero casuale di elementi.
Koop4,

1

function arr(arr1,arr2){
  
  function filt(value){
    return arr2.indexOf(value) === -1;
    }
  
  return arr1.filter(filt)
  }

document.getElementById("p").innerHTML = arr([1,2,3,4],[2,4])
<p id="p"></p>


1

Un array di filtro più flessibile da un altro array che contiene proprietà dell'oggetto

function filterFn(array, diffArray, prop, propDiff) {
    diffArray = !propDiff ? diffArray : diffArray.map(d => d[propDiff])
    this.fn = f => diffArray.indexOf(f) === -1
    if (prop) {
         return array.map(r => r[prop]).filter(this.fn)
    } else {
         return array.filter(this.fn)
    }
}

//You can use it like this;

var arr = [];

for (var i = 0; i < 10; i++) {
    var obj = {}
    obj.index = i
    obj.value = Math.pow(2, i)
    arr.push(obj)
}

var arr2 = [1, 2, 3, 4, 5]

var sec = [{t:2}, {t:99}, {t:256}, {t:4096}]

var log = console.log.bind(console)

var filtered = filterFn(arr, sec, 'value', 't')

var filtered2 = filterFn(arr2, sec, null, 't')

log(filtered, filtered2)


1

È possibile scrivere una funzione filterByIndex () generica e utilizzare l'inferenza del tipo in TS per salvare la seccatura con la funzione di callback:

diciamo che hai il tuo array [1,2,3,4] che vuoi filtrare () con gli indici specificati nell'array [2,4].

var filtered = [1,2,3,4,].filter(byIndex(element => element, [2,4]))

la funzione byIndex prevede la funzione element e un array e si presenta così:

byIndex = (getter: (e:number) => number, arr: number[]) => (x: number) => {
    var i = getter(x);
    return arr.indexOf(i); 
}

il risultato è quindi

filtered = [1,3]

1

I seguenti esempi usano new Set() per creare un array filtrato che ha solo elementi univoci:

Matrice con tipi di dati primitivi: stringa, numero, booleano, null, non definito, simbolo:

const a = [1, 2, 3, 4];
const b = [3, 4, 5];
const c = Array.from(new Set(a.concat(b)));

Matrice con oggetti come oggetti:

const a = [{id:1}, {id: 2}, {id: 3}, {id: 4}];
const b = [{id: 3}, {id: 4}, {id: 5}];
const stringifyObject = o => JSON.stringify(o);
const parseString = s => JSON.parse(s);
const c = Array.from(new Set(a.concat(b).map(stringifyObject)), parseString);

1

Di seguito è riportato un esempio

let firstArray=[1,2,3,4,5];
let secondArray=[2,3];  
let filteredArray = firstArray.filter((a) => secondArray.indexOf(a)<0);
console.log(filteredArray); //above line gives [1,4,5]


0

La soluzione di Jack Giffin è eccezionale, ma non funziona con array con numeri maggiori di 2 ^ 32. Di seguito è riportata una versione refactored e veloce per filtrare un array basato sulla soluzione di Jack ma funziona per array a 64 bit.

const Math_clz32 = Math.clz32 || ((log, LN2) => x => 31 - log(x >>> 0) / LN2 | 0)(Math.log, Math.LN2);

const filterArrayByAnotherArray = (searchArray, filterArray) => {

    searchArray.sort((a,b) => a > b);
    filterArray.sort((a,b) => a > b);

    let searchArrayLen = searchArray.length, filterArrayLen = filterArray.length;
    let progressiveLinearComplexity = ((searchArrayLen<<1) + filterArrayLen)>>>0
    let binarySearchComplexity = (searchArrayLen * (32-Math_clz32(filterArrayLen-1)))>>>0;

    let i = 0;

    if (progressiveLinearComplexity < binarySearchComplexity) {
      return searchArray.filter(currentValue => {
        while (filterArray[i] < currentValue) i=i+1|0;
        return filterArray[i] !== currentValue;
      });
    }
    else return searchArray.filter(e => binarySearch(filterArray, e) === null);
}

const binarySearch = (sortedArray, elToFind) => {
  let lowIndex = 0;
  let highIndex = sortedArray.length - 1;
  while (lowIndex <= highIndex) {
    let midIndex = Math.floor((lowIndex + highIndex) / 2);
    if (sortedArray[midIndex] == elToFind) return midIndex; 
    else if (sortedArray[midIndex] < elToFind) lowIndex = midIndex + 1;
    else highIndex = midIndex - 1;
  } return null;
}
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.