Dovresti iniziare definendo cosa sia un albero (per il dominio), questo è meglio definendo prima l' interfaccia . Non tutte le strutture ad albero sono modificabili, essere in grado di aggiungere e rimuovere nodi dovrebbe essere una funzione opzionale, quindi creiamo un'interfaccia aggiuntiva per questo.
Non è necessario creare oggetti nodo che contengano i valori , in effetti lo vedo come un grave difetto di progettazione e sovraccarico nella maggior parte delle implementazioni degli alberi. Se guardi Swing, TreeModel
è privo di classi di nodi (ne DefaultTreeModel
fa solo uso TreeNode
), in quanto non sono realmente necessarie.
public interface Tree <N extends Serializable> extends Serializable {
List<N> getRoots ();
N getParent (N node);
List<N> getChildren (N node);
}
Struttura ad albero mutevole (consente di aggiungere e rimuovere nodi):
public interface MutableTree <N extends Serializable> extends Tree<N> {
boolean add (N parent, N node);
boolean remove (N node, boolean cascade);
}
Date queste interfacce, il codice che utilizza gli alberi non deve preoccuparsi molto di come viene implementato l'albero. Ciò consente di utilizzare implementazioni generiche e specializzate , in cui realizzare l'albero delegando le funzioni a un'altra API.
Esempio: struttura ad albero dei file
public class FileTree implements Tree<File> {
@Override
public List<File> getRoots() {
return Arrays.stream(File.listRoots()).collect(Collectors.toList());
}
@Override
public File getParent(File node) {
return node.getParentFile();
}
@Override
public List<File> getChildren(File node) {
if (node.isDirectory()) {
File[] children = node.listFiles();
if (children != null) {
return Arrays.stream(children).collect(Collectors.toList());
}
}
return Collections.emptyList();
}
}
Esempio: struttura ad albero generica (basata su relazioni padre / figlio):
public class MappedTreeStructure<N extends Serializable> implements MutableTree<N> {
public static void main(String[] args) {
MutableTree<String> tree = new MappedTreeStructure<>();
tree.add("A", "B");
tree.add("A", "C");
tree.add("C", "D");
tree.add("E", "A");
System.out.println(tree);
}
private final Map<N, N> nodeParent = new HashMap<>();
private final LinkedHashSet<N> nodeList = new LinkedHashSet<>();
private void checkNotNull(N node, String parameterName) {
if (node == null)
throw new IllegalArgumentException(parameterName + " must not be null");
}
@Override
public boolean add(N parent, N node) {
checkNotNull(parent, "parent");
checkNotNull(node, "node");
// check for cycles
N current = parent;
do {
if (node.equals(current)) {
throw new IllegalArgumentException(" node must not be the same or an ancestor of the parent");
}
} while ((current = getParent(current)) != null);
boolean added = nodeList.add(node);
nodeList.add(parent);
nodeParent.put(node, parent);
return added;
}
@Override
public boolean remove(N node, boolean cascade) {
checkNotNull(node, "node");
if (!nodeList.contains(node)) {
return false;
}
if (cascade) {
for (N child : getChildren(node)) {
remove(child, true);
}
} else {
for (N child : getChildren(node)) {
nodeParent.remove(child);
}
}
nodeList.remove(node);
return true;
}
@Override
public List<N> getRoots() {
return getChildren(null);
}
@Override
public N getParent(N node) {
checkNotNull(node, "node");
return nodeParent.get(node);
}
@Override
public List<N> getChildren(N node) {
List<N> children = new LinkedList<>();
for (N n : nodeList) {
N parent = nodeParent.get(n);
if (node == null && parent == null) {
children.add(n);
} else if (node != null && parent != null && parent.equals(node)) {
children.add(n);
}
}
return children;
}
@Override
public String toString() {
StringBuilder builder = new StringBuilder();
dumpNodeStructure(builder, null, "- ");
return builder.toString();
}
private void dumpNodeStructure(StringBuilder builder, N node, String prefix) {
if (node != null) {
builder.append(prefix);
builder.append(node.toString());
builder.append('\n');
prefix = " " + prefix;
}
for (N child : getChildren(node)) {
dumpNodeStructure(builder, child, prefix);
}
}
}