Risposte:
Se l'ordine non è importante e non è necessario preoccuparsi dei duplicati, è possibile utilizzare set intersezione:
>>> a = [1,2,3,4,5]
>>> b = [1,3,5,6]
>>> list(set(a) & set(b))
[1, 3, 5]
a = [1,1,2,3,4,5]
e b = [1,1,3,5,6]
quindi l'intersezione è, [1,1,3,5]
ma con il metodo sopra riportato ne risulterà solo uno, 1
cioè [1, 3, 5]
quale sarà il modo di scrittura per farlo?
intersection
è comunemente inteso come impostato . Stai cercando un animale leggermente diverso - e potresti doverlo fare manualmente ordinando ciascun elenco e unendo i risultati - e mantenendo i duplicati nella fusione.
L'uso della comprensione dell'elenco è abbastanza ovvio per me. Non sono sicuro delle prestazioni, ma almeno le cose rimangono nelle liste.
[x for x in a if x in b]
O "tutti i valori x che sono in A, se il valore X è in B".
b
un set e avrai O (n)
Se converti la più grande delle due liste in un set, puoi ottenere l'intersezione di quel set con qualsiasi iterabile usando intersection()
:
a = [1,2,3,4,5]
b = [1,3,5,6]
set(a).intersection(b)
list(set(a) & set(b))
Crea un set da quello più grande:
_auxset = set(a)
Poi,
c = [x for x in b if x in _auxset]
farà quello che vuoi (preservando b
l'ordinamento, non quello a
- non può necessariamente preservare entrambi ) e lo farà velocemente . (L'uso if x in a
come condizione nella comprensione dell'elenco funzionerebbe anche ed eviterebbe la necessità di costruire _auxset
, ma sfortunatamente per elenchi di lunghezza sostanziale sarebbe molto più lento).
Se vuoi che il risultato sia ordinato, piuttosto che preservare l'ordinamento di entrambi gli elenchi, un modo ancora più ordinato potrebbe essere:
c = sorted(set(a).intersection(b))
Ecco del codice Python 2 / Python 3 che genera informazioni di temporizzazione per i metodi basati su elenco e basati su set per trovare l'intersezione di due elenchi.
Gli algoritmi di comprensione dell'elenco puro sono O (n ^ 2), poiché in
in un elenco è presente una ricerca lineare. Gli algoritmi basati su set sono O (n), poiché la ricerca di set è O (1) e la creazione di set è O (n) (e la conversione di un set in un elenco è anche O (n)). Così, per sufficientemente grandi n algoritmi set-based sono più veloci, ma per i piccoli n le spese generali per la creazione del set (s) li rendono più lento rispetto agli algoritmi lista comp puri.
#!/usr/bin/env python
''' Time list- vs set-based list intersection
See http://stackoverflow.com/q/3697432/4014959
Written by PM 2Ring 2015.10.16
'''
from __future__ import print_function, division
from timeit import Timer
setup = 'from __main__ import a, b'
cmd_lista = '[u for u in a if u in b]'
cmd_listb = '[u for u in b if u in a]'
cmd_lcsa = 'sa=set(a);[u for u in b if u in sa]'
cmd_seta = 'list(set(a).intersection(b))'
cmd_setb = 'list(set(b).intersection(a))'
reps = 3
loops = 50000
def do_timing(heading, cmd, setup):
t = Timer(cmd, setup)
r = t.repeat(reps, loops)
r.sort()
print(heading, r)
return r[0]
m = 10
nums = list(range(6 * m))
for n in range(1, m + 1):
a = nums[:6*n:2]
b = nums[:6*n:3]
print('\nn =', n, len(a), len(b))
#print('\nn = %d\n%s %d\n%s %d' % (n, a, len(a), b, len(b)))
la = do_timing('lista', cmd_lista, setup)
lb = do_timing('listb', cmd_listb, setup)
lc = do_timing('lcsa ', cmd_lcsa, setup)
sa = do_timing('seta ', cmd_seta, setup)
sb = do_timing('setb ', cmd_setb, setup)
print(la/sa, lb/sa, lc/sa, la/sb, lb/sb, lc/sb)
produzione
n = 1 3 2
lista [0.082171916961669922, 0.082588911056518555, 0.0898590087890625]
listb [0.069530963897705078, 0.070394992828369141, 0.075379848480224609]
lcsa [0.11858987808227539, 0.1188349723815918, 0.12825107574462891]
seta [0.26900982856750488, 0.26902294158935547, 0.27298116683959961]
setb [0.27218389511108398, 0.27459001541137695, 0.34307217597961426]
0.305460649521 0.258469975867 0.440838458259 0.301898526833 0.255455833892 0.435697630214
n = 2 6 4
lista [0.15915989875793457, 0.16000485420227051, 0.16551494598388672]
listb [0.13000702857971191, 0.13060092926025391, 0.13543915748596191]
lcsa [0.18650484085083008, 0.18742108345031738, 0.19513416290283203]
seta [0.33592700958251953, 0.34001994132995605, 0.34146714210510254]
setb [0.29436492919921875, 0.2953648567199707, 0.30039691925048828]
0.473793098554 0.387009751735 0.555194537893 0.540689066428 0.441652573672 0.633583767462
n = 3 9 6
lista [0.27657914161682129, 0.28098297119140625, 0.28311991691589355]
listb [0.21585917472839355, 0.21679902076721191, 0.22272896766662598]
lcsa [0.22559309005737305, 0.2271728515625, 0.2323150634765625]
seta [0.36382699012756348, 0.36453008651733398, 0.36750602722167969]
setb [0.34979605674743652, 0.35533690452575684, 0.36164689064025879]
0.760194128313 0.59330170819 0.62005595016 0.790686848184 0.61710008036 0.644927481902
n = 4 12 8
lista [0.39616990089416504, 0.39746403694152832, 0.41129183769226074]
listb [0.33485794067382812, 0.33914685249328613, 0.37850618362426758]
lcsa [0.27405810356140137, 0.2745978832244873, 0.28249192237854004]
seta [0.39211201667785645, 0.39234519004821777, 0.39317893981933594]
setb [0.36988520622253418, 0.37011313438415527, 0.37571001052856445]
1.01034878821 0.85398540833 0.698928091731 1.07106176249 0.905302334456 0.740927452493
n = 5 15 10
lista [0.56792402267456055, 0.57422614097595215, 0.57740211486816406]
listb [0.47309303283691406, 0.47619009017944336, 0.47628307342529297]
lcsa [0.32805585861206055, 0.32813096046447754, 0.3349759578704834]
seta [0.40036201477050781, 0.40322518348693848, 0.40548801422119141]
setb [0.39103078842163086, 0.39722800254821777, 0.43811702728271484]
1.41852623806 1.18166313332 0.819398061028 1.45237674242 1.20986133789 0.838951479847
n = 6 18 12
lista [0.77897095680236816, 0.78187918663024902, 0.78467702865600586]
listb [0.629547119140625, 0.63210701942443848, 0.63321495056152344]
lcsa [0.36563992500305176, 0.36638498306274414, 0.38175487518310547]
seta [0.46695613861083984, 0.46992206573486328, 0.47583580017089844]
setb [0.47616910934448242, 0.47661614418029785, 0.4850609302520752]
1.66818870637 1.34819326075 0.783028414812 1.63591241329 1.32210827369 0.767878297495
n = 7 21 14
lista [0.9703209400177002, 0.9734041690826416, 1.0182771682739258]
listb [0.82394003868103027, 0.82625699043273926, 0.82796716690063477]
lcsa [0.40975093841552734, 0.41210508346557617, 0.42286920547485352]
seta [0.5086359977722168, 0.50968098640441895, 0.51014018058776855]
setb [0.48688101768493652, 0.4879908561706543, 0.49204087257385254]
1.90769222837 1.61990115188 0.805587768483 1.99293236904 1.69228211566 0.841583309951
n = 8 24 16
lista [1.204819917678833, 1.2206029891967773, 1.258256196975708]
listb [1.014998197555542, 1.0206191539764404, 1.0343101024627686]
lcsa [0.50966787338256836, 0.51018595695495605, 0.51319599151611328]
seta [0.50310111045837402, 0.50556015968322754, 0.51335406303405762]
setb [0.51472997665405273, 0.51948785781860352, 0.52113485336303711]
2.39478683834 2.01748351664 1.01305257092 2.34068341135 1.97190418975 0.990165516871
n = 9 27 18
lista [1.511646032333374, 1.5133969783782959, 1.5639569759368896]
listb [1.2461750507354736, 1.254518985748291, 1.2613379955291748]
lcsa [0.5565330982208252, 0.56119203567504883, 0.56451296806335449]
seta [0.5966339111328125, 0.60275578498840332, 0.64791703224182129]
setb [0.54694414138793945, 0.5508568286895752, 0.55375313758850098]
2.53362406013 2.08867620074 0.932788243907 2.76380331728 2.27843203069 1.01753187594
n = 10 30 20
lista [1.7777848243713379, 2.1453688144683838, 2.4085969924926758]
listb [1.5070111751556396, 1.5202279090881348, 1.5779800415039062]
lcsa [0.5954139232635498, 0.59703707695007324, 0.60746097564697266]
seta [0.61563014984130859, 0.62125110626220703, 0.62354087829589844]
setb [0.56723213195800781, 0.57257509231567383, 0.57460403442382812]
2.88774814689 2.44791645689 0.967161734066 3.13413984189 2.6567803378 1.04968299523
Generato utilizzando una macchina single core da 2 GHz con 2 GB di RAM con Python 2.6.6 su un sapore Debian di Linux (con Firefox in esecuzione in background).
Queste cifre sono solo una guida approssimativa, poiché le velocità effettive dei vari algoritmi sono influenzate in modo diverso dalla proporzione di elementi presenti in entrambi gli elenchi di sorgenti.
Un modo funzionale può essere raggiunto utilizzando filter
e lambda
operatore.
list1 = [1,2,3,4,5,6]
list2 = [2,4,6,9,10]
>>> list(filter(lambda x:x in list1, list2))
[2, 4, 6]
Modifica: filtra x che esiste sia in list1 che in list, inoltre è possibile ottenere la differenza impostata usando:
>>> list(filter(lambda x:x not in list1, list2))
[9,10]
Edit2: python3 filter
restituisce un oggetto filtro, incapsulandolo con list
restituisce l'elenco di output.
list(filter(lambda x:x in list1, list2))
per ottenerlo come un elenco.
Questo è un esempio quando è necessario Ogni elemento nel risultato dovrebbe apparire tutte le volte che viene mostrato in entrambi gli array.
def intersection(nums1, nums2):
#example:
#nums1 = [1,2,2,1]
#nums2 = [2,2]
#output = [2,2]
#find first 2 and remove from target, continue iterating
target, iterate = [nums1, nums2] if len(nums2) >= len(nums1) else [nums2, nums1] #iterate will look into target
if len(target) == 0:
return []
i = 0
store = []
while i < len(iterate):
element = iterate[i]
if element in target:
store.append(element)
target.remove(element)
i += 1
return store
Potrebbe essere tardi, ma ho pensato di condividere il caso in cui ti viene richiesto di farlo manualmente (mostra funzionante - ahah) O quando hai bisogno che tutti gli elementi appaiano il maggior numero di volte possibile o quando hai bisogno che sia unico .
Si prega di notare che anche i test sono stati scritti per questo.
from nose.tools import assert_equal
'''
Given two lists, print out the list of overlapping elements
'''
def overlap(l_a, l_b):
'''
compare the two lists l_a and l_b and return the overlapping
elements (intersecting) between the two
'''
#edge case is when they are the same lists
if l_a == l_b:
return [] #no overlapping elements
output = []
if len(l_a) == len(l_b):
for i in range(l_a): #same length so either one applies
if l_a[i] in l_b:
output.append(l_a[i])
#found all by now
#return output #if repetition does not matter
return list(set(output))
else:
#find the smallest and largest lists and go with that
sm = l_a if len(l_a) len(l_b) else l_b
for i in range(len(sm)):
if sm[i] in lg:
output.append(sm[i])
#return output #if repetition does not matter
return list(set(output))
## Test the Above Implementation
a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
exp = [1, 2, 3, 5, 8, 13]
c = [4, 4, 5, 6]
d = [5, 7, 4, 8 ,6 ] #assuming it is not ordered
exp2 = [4, 5, 6]
class TestOverlap(object):
def test(self, sol):
t = sol(a, b)
assert_equal(t, exp)
print('Comparing the two lists produces')
print(t)
t = sol(c, d)
assert_equal(t, exp2)
print('Comparing the two lists produces')
print(t)
print('All Tests Passed!!')
t = TestOverlap()
t.test(overlap)
Puoi anche usare un contatore! Non conserva l'ordine, ma prenderà in considerazione i duplicati:
>>> from collections import Counter
>>> a = [1,2,3,4,5]
>>> b = [1,3,5,6]
>>> d1, d2 = Counter(a), Counter(b)
>>> c = [n for n in d1.keys() & d2.keys() for _ in range(min(d1[n], d2[n]))]
>>> print(c)
[1,3,5]
a and b
funziona come la seguente dichiarazione della documentazione che lo menziona: " L'espressionex and y
valuta primax
; sex
è falso, il suo valore viene restituito; altrimenti,y
viene valutato e viene restituito il valore risultante. "