le cose chiave da sapere per le operazioni sulle matrici NumPy rispetto alle operazioni sulle matrici NumPy sono:
La matrice NumPy è una sottoclasse dell'array NumPy
Le operazioni di array NumPy sono elementari (una volta che la trasmissione è stata tenuta in considerazione)
Le operazioni con matrice NumPy seguono le normali regole dell'algebra lineare
alcuni frammenti di codice per illustrare:
>>> from numpy import linalg as LA
>>> import numpy as NP
>>> a1 = NP.matrix("4 3 5; 6 7 8; 1 3 13; 7 21 9")
>>> a1
matrix([[ 4, 3, 5],
[ 6, 7, 8],
[ 1, 3, 13],
[ 7, 21, 9]])
>>> a2 = NP.matrix("7 8 15; 5 3 11; 7 4 9; 6 15 4")
>>> a2
matrix([[ 7, 8, 15],
[ 5, 3, 11],
[ 7, 4, 9],
[ 6, 15, 4]])
>>> a1.shape
(4, 3)
>>> a2.shape
(4, 3)
>>> a2t = a2.T
>>> a2t.shape
(3, 4)
>>> a1 * a2t # same as NP.dot(a1, a2t)
matrix([[127, 84, 85, 89],
[218, 139, 142, 173],
[226, 157, 136, 103],
[352, 197, 214, 393]])
ma questa operazione fallisce se queste due matrici NumPy vengono convertite in array:
>>> a1 = NP.array(a1)
>>> a2t = NP.array(a2t)
>>> a1 * a2t
Traceback (most recent call last):
File "<pyshell#277>", line 1, in <module>
a1 * a2t
ValueError: operands could not be broadcast together with shapes (4,3) (3,4)
sebbene l'uso della sintassi NP.dot funzioni con le matrici ; questa operazione funziona come una moltiplicazione di matrici:
>> NP.dot(a1, a2t)
array([[127, 84, 85, 89],
[218, 139, 142, 173],
[226, 157, 136, 103],
[352, 197, 214, 393]])
hai mai bisogno di una matrice NumPy? vale a dire, un array NumPy sarà sufficiente per il calcolo dell'algebra lineare (a condizione che tu conosca la sintassi corretta, cioè NP.dot)?
la regola sembra essere che se gli argomenti (array) hanno forme (mxn) compatibili con una data operazione di algebra lineare, allora stai bene, altrimenti NumPy genera.
l'unica eccezione che ho riscontrato (probabilmente ce ne sono altri) è il calcolo dell'inverso della matrice .
di seguito sono riportati frammenti in cui ho chiamato un'operazione di algebra lineare pura (in effetti, dal modulo di algebra lineare di Numpy) e passata in un array NumPy
determinante di un array:
>>> m = NP.random.randint(0, 10, 16).reshape(4, 4)
>>> m
array([[6, 2, 5, 2],
[8, 5, 1, 6],
[5, 9, 7, 5],
[0, 5, 6, 7]])
>>> type(m)
<type 'numpy.ndarray'>
>>> md = LA.det(m)
>>> md
1772.9999999999995
autovettori / coppie di autovalori :
>>> LA.eig(m)
(array([ 19.703+0.j , 0.097+4.198j, 0.097-4.198j, 5.103+0.j ]),
array([[-0.374+0.j , -0.091+0.278j, -0.091-0.278j, -0.574+0.j ],
[-0.446+0.j , 0.671+0.j , 0.671+0.j , -0.084+0.j ],
[-0.654+0.j , -0.239-0.476j, -0.239+0.476j, -0.181+0.j ],
[-0.484+0.j , -0.387+0.178j, -0.387-0.178j, 0.794+0.j ]]))
norma matriciale :
>>>> LA.norm(m)
22.0227
fattorizzazione qr :
>>> LA.qr(a1)
(array([[ 0.5, 0.5, 0.5],
[ 0.5, 0.5, -0.5],
[ 0.5, -0.5, 0.5],
[ 0.5, -0.5, -0.5]]),
array([[ 6., 6., 6.],
[ 0., 0., 0.],
[ 0., 0., 0.]]))
rango matrice :
>>> m = NP.random.rand(40).reshape(8, 5)
>>> m
array([[ 0.545, 0.459, 0.601, 0.34 , 0.778],
[ 0.799, 0.047, 0.699, 0.907, 0.381],
[ 0.004, 0.136, 0.819, 0.647, 0.892],
[ 0.062, 0.389, 0.183, 0.289, 0.809],
[ 0.539, 0.213, 0.805, 0.61 , 0.677],
[ 0.269, 0.071, 0.377, 0.25 , 0.692],
[ 0.274, 0.206, 0.655, 0.062, 0.229],
[ 0.397, 0.115, 0.083, 0.19 , 0.701]])
>>> LA.matrix_rank(m)
5
condizione matrice :
>>> a1 = NP.random.randint(1, 10, 12).reshape(4, 3)
>>> LA.cond(a1)
5.7093446189400954
l'inversione richiede una matrice NumPyperò:
>>> a1 = NP.matrix(a1)
>>> type(a1)
<class 'numpy.matrixlib.defmatrix.matrix'>
>>> a1.I
matrix([[ 0.028, 0.028, 0.028, 0.028],
[ 0.028, 0.028, 0.028, 0.028],
[ 0.028, 0.028, 0.028, 0.028]])
>>> a1 = NP.array(a1)
>>> a1.I
Traceback (most recent call last):
File "<pyshell#230>", line 1, in <module>
a1.I
AttributeError: 'numpy.ndarray' object has no attribute 'I'
ma lo pseudoinverso di Moore-Penrose sembra funzionare bene
>>> LA.pinv(m)
matrix([[ 0.314, 0.407, -1.008, -0.553, 0.131, 0.373, 0.217, 0.785],
[ 1.393, 0.084, -0.605, 1.777, -0.054, -1.658, 0.069, -1.203],
[-0.042, -0.355, 0.494, -0.729, 0.292, 0.252, 1.079, -0.432],
[-0.18 , 1.068, 0.396, 0.895, -0.003, -0.896, -1.115, -0.666],
[-0.224, -0.479, 0.303, -0.079, -0.066, 0.872, -0.175, 0.901]])
>>> m = NP.array(m)
>>> LA.pinv(m)
array([[ 0.314, 0.407, -1.008, -0.553, 0.131, 0.373, 0.217, 0.785],
[ 1.393, 0.084, -0.605, 1.777, -0.054, -1.658, 0.069, -1.203],
[-0.042, -0.355, 0.494, -0.729, 0.292, 0.252, 1.079, -0.432],
[-0.18 , 1.068, 0.396, 0.895, -0.003, -0.896, -1.115, -0.666],
[-0.224, -0.479, 0.303, -0.079, -0.066, 0.872, -0.175, 0.901]])