Loop in una spirale


154

Un amico aveva bisogno di un algoritmo che gli permettesse di scorrere gli elementi di una matrice NxM (N e M sono dispari). Ho trovato una soluzione, ma volevo vedere se i miei compagni SO potevano trovare una soluzione migliore.

Sto pubblicando la mia soluzione come risposta a questa domanda.

Esempio di output:

Per una matrice 3x3, l'output dovrebbe essere:

(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1 )

Matrice 3x3

Inoltre, l'algoritmo dovrebbe supportare matrici non quadrate, quindi ad esempio per una matrice 5x3, l'output dovrebbe essere:

(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1 ) (2, -1) (2, 0) (2, 1) (-2, 1) (-2, 0) (-2, -1)

Matrice 5x3


Puoi spiegare cosa vuoi per le matrici non quadrate? La tua soluzione ha un "salto" da (2,1) a (-2,1) - è previsto? [Ad esempio per una matrice 7x3, avrebbe altri due "salti", e per una matrice (2k + 1) x3 avrebbe salti 2k-3?]
ShreevatsaR

3
Sì, i salti sono intenzionali. Ho aggiornato la domanda con un'immagine a matrice 5x3. Come puoi vedere dall'immagine, stiamo saltando le righe superiore e inferiore.
Can Berk Güder,

Ok, allora il tuo codice sembra più pulito. E sebbene questo sia offtopico: come hai generato quelle immagini? :)
ShreevatsaR

=)) Non li ho generati. In effetti, il modo in cui li ho creati è abbastanza stupido. Ho creato le tabelle in OO.org Calc, ho preso uno screenshot e modificato lo screenshot in GIMP. =))
Can Berk Güder il

1
@Ying: Non so davvero perché il mio amico ne abbia bisogno, ma ha detto che vuole favorire i membri della matrice più vicini al centro in un algoritmo di ricerca.
Can Berk Güder,

Risposte:


63

Ecco la mia soluzione (in Python):

def spiral(X, Y):
    x = y = 0
    dx = 0
    dy = -1
    for i in range(max(X, Y)**2):
        if (-X/2 < x <= X/2) and (-Y/2 < y <= Y/2):
            print (x, y)
            # DO STUFF...
        if x == y or (x < 0 and x == -y) or (x > 0 and x == 1-y):
            dx, dy = -dy, dx
        x, y = x+dx, y+dy

1
Questo è il modo migliore di scriverlo, per quanto posso vedere. L'unico possibile miglioramento sarebbe renderlo O (MN) invece di O (max (M, N) ^ 2) saltando direttamente quelle (x, y) che non verranno stampate, ma ciò renderà il codice un po 'più brutto.
ShreevatsaR

Sto ottimizzando la mia soluzione ed è abbastanza vicino a quello che hai già. Questa è una soluzione abbastanza buona, penso. Oltre al suggerimento di ShreevatsaR e cose come non calcolare x / 2 e y / 2 per ogni iterazione, non c'è molto da migliorare se non lo stile.
Trittico

Qualche soluzione per matlab ?!
Sam,

Ciò garantisce una buona coerenza della cache per l'accesso ai dati del buffer delle immagini? (Ci sono così tante risposte qui, ma non molte informazioni su quale funziona meglio per le operazioni sulle immagini ad alte prestazioni)
ideasman42

@ ideasman42 - questo non entra in gioco, perché il risultato è sempre lo stesso schema a spirale delle coordinate. Se il modello a spirale sia coerente con la cache, credo che dipenda dall'implementazione del buffer dell'immagine. (la mia ipotesi è che distruggerebbe la cache più di altri modi di camminare sull'immagine, come andare riga per riga in ordine). Ma la scelta dell'algoritmo per produrre queste coordinate probabilmente non influirà sulla cache.
Raptormeat

31

C ++ qualcuno? Traduzione rapida da Python, pubblicata per completezza

void Spiral( int X, int Y){
    int x,y,dx,dy;
    x = y = dx =0;
    dy = -1;
    int t = std::max(X,Y);
    int maxI = t*t;
    for(int i =0; i < maxI; i++){
        if ((-X/2 <= x) && (x <= X/2) && (-Y/2 <= y) && (y <= Y/2)){
            // DO STUFF...
        }
        if( (x == y) || ((x < 0) && (x == -y)) || ((x > 0) && (x == 1-y))){
            t = dx;
            dx = -dy;
            dy = t;
        }
        x += dx;
        y += dy;
    }
}

puoi anche usare s e ds come faccio io per rilevare gli angoli che eliminano l'enorme condizione if
John La Rooy,

1
Una modifica a questo post è stata suggerita qui . Sebbene la modifica sia stata rifiutata perché modifica il significato del tuo post, potresti prendere in considerazione l'idea di incorporare le modifiche suggerite se ha senso farlo.
Robert Harvey,

19
let x = 0
let y = 0
let d = 1
let m = 1

while true
  while 2 * x * d < m
    print(x, y)
    x = x + d
  while 2 * y * d < m
    print(x, y)
    y = y + d
  d = -1 * d
  m = m + 1

Ci sono state molte soluzioni proposte per questo problema scritte in vari linguaggi di programmazione, ma sembrano tutte derivare dallo stesso approccio contorto. Prenderò in considerazione il problema più generale del calcolo di una spirale che può essere espressa in modo conciso usando l'induzione.

Caso base: inizia da (0, 0), vai avanti di 1 quadrato, gira a sinistra, vai avanti di 1 quadrato, gira a sinistra. Passaggio induttivo: sposta in avanti di n + 1 quadrati, gira a sinistra, sposta in avanti di n + 1 quadrati, gira a sinistra.

L'eleganza matematica nell'esprimere questo problema suggerisce fortemente che dovrebbe esserci un semplice algoritmo per calcolare la soluzione. Tenendo presente l'astrazione, ho scelto di non implementare l'algoritmo in un linguaggio di programmazione specifico ma piuttosto di pseudo-codice.

Innanzitutto prenderò in considerazione un algoritmo per calcolare solo 2 iterazioni della spirale usando 4 coppie di loop while. La struttura di ciascuna coppia è simile, ma distinta a sé stante. All'inizio questo può sembrare folle (alcuni loop vengono eseguiti solo una volta) ma passo dopo passo eseguirò trasformazioni fino a quando non arriveremo a 4 coppie di loop identici e quindi possono essere sostituiti con una singola coppia posizionata all'interno di un altro loop. Questo ci fornirà una soluzione generale di calcolo delle iterazioni senza usare alcun condizionale.

let x = 0
let y = 0

//RIGHT, UP
while x < 1
  print(x, y)
  x = x + 1
while y < 1
  print(x, y)
  y = y + 1

//LEFT, LEFT, DOWN, DOWN
while x > -1
  print(x, y)
  x = x - 1
while y > -1
  print(x, y)
  y = y - 1

//RIGHT, RIGHT, RIGHT, UP, UP, UP
while x < 2
  print(x, y)
  x = x + 1
while y < 2
  print(x, y)
  y = y + 1

//LEFT, LEFT, LEFT, LEFT, DOWN, DOWN, DOWN, DOWN
while x > -2
  print(x, y)
  x = x - 1
while y > -2
  print(x, y)
  y = y - 1

La prima trasformazione che faremo è l'introduzione di una nuova variabile d, per la direzione, che contiene il valore +1 o -1. La direzione cambia dopo ogni coppia di anelli. Poiché conosciamo il valore di d in tutti i punti, possiamo moltiplicare ciascun lato di ciascuna disuguaglianza per esso, regolare di conseguenza la direzione della disuguaglianza e semplificare eventuali moltiplicazioni di d da una costante ad un'altra costante. Questo ci lascia con il seguente.

let x = 0
let y = 0
let d = 1

//RIGHT, UP
while x * d < 1
  print(x, y)
  x = x + d
while y * d < 1
  print(x, y)
  y = y + d
d = -1 * d

//LEFT, LEFT, DOWN, DOWN
while x * d < 1
  print(x, y)
  x = x + d
while y * d < 1
  print(x, y)
  y = y + d
d = -1 * d

//RIGHT, RIGHT, RIGHT, UP, UP, UP
while x * d < 2
  print(x, y)
  x = x + d
while y * d < 2
  print(x, y)
  y = y + d
d = -1 * d

//LEFT, LEFT, LEFT, LEFT, DOWN, DOWN, DOWN, DOWN
while x * d < 2
  print(x, y)
  x = x + d
while y * d < 2
  print(x, y)
  y = y + d

Ora notiamo che sia x * d sia RHS sono numeri interi in modo da poter sottrarre qualsiasi valore reale tra 0 e 1 dall'RHS senza influenzare il risultato della disuguaglianza. Scegliamo di sottrarre 0,5 dalle disuguaglianze di ogni altra coppia di loop while per stabilire più di un modello.

let x = 0
let y = 0
let d = 1

//RIGHT, UP
while x * d < 0.5
  print(x, y)
  x = x + d
while y * d < 0.5
  print(x, y)
  y = y + d
d = -1 * d

//LEFT, LEFT, DOWN, DOWN
while x * d < 1
  print(x, y)
  x = x + d
while y * d < 1
  print(x, y)
  y = y + d
d = -1 * d

//RIGHT, RIGHT, RIGHT, UP, UP, UP
while x * d < 1.5
  print(x, y)
  x = x + d
while y * d < 1.5
  print(x, y)
  y = y + d
d = -1 * d

//LEFT, LEFT, LEFT, LEFT, DOWN, DOWN, DOWN, DOWN
while x * d < 2
  print(x, y)
  x = x + d
while y * d < 2
  print(x, y)
  y = y + d

Ora possiamo introdurre un'altra variabile m per il numero di passi che facciamo ad ogni coppia di cicli while.

let x = 0
let y = 0
let d = 1
let m = 0.5

//RIGHT, UP
while x * d < m
  print(x, y)
  x = x + d
while y * d < m
  print(x, y)
  y = y + d
d = -1 * d
m = m + 0.5

//LEFT, LEFT, DOWN, DOWN
while x * d < m
  print(x, y)
  x = x + d
while y * d < m
  print(x, y)
  y = y + d
d = -1 * d
m = m + 0.5

//RIGHT, RIGHT, RIGHT, UP, UP, UP
while x * d < m
  print(x, y)
  x = x + d
while y * d < m
  print(x, y)
  y = y + d
d = -1 * d
m = m + 0.5

//LEFT, LEFT, LEFT, LEFT, DOWN, DOWN, DOWN, DOWN
while x * d < m
  print(x, y)
  x = x + d
while y * d < m
  print(x, y)
  y = y + d

Infine, vediamo che la struttura di ciascuna coppia di loop while è identica e può essere ridotta a un singolo loop posizionato all'interno di un altro loop. Inoltre, per evitare di usare numeri con valori reali ho moltiplicato il valore iniziale di m; il valore m viene incrementato di; ed entrambi i lati di ciascuna disuguaglianza di 2.

Questo porta alla soluzione mostrata all'inizio di questa risposta.


1
In quali condizioni terminerebbe la tua soluzione finale?
Merlyn Morgan-Graham,

1
Qual è l'applicazione di questo tipo di stampa del modello?
Ashish Shukla,

1
@ MerlynMorgan-Graham Termina quando il computer esaurisce la memoria o l'alimentazione.
Mike,

Sembra che l'eleganza di quella soluzione derivi dall'ignorare vincoli di tempo e memoria. Consiglio di aggiungere elegantemente una condizione di risoluzione (se possibile). Consiglio anche di spostarlo all'inizio della risposta e di mostrare la derivazione sottostante.
Merlyn Morgan-Graham,

1
Mentre la domanda originale riguardava una matrice NxM, questa è in realtà una risposta molto utile se hai bisogno di andare all'infinito a spirale verso l'esterno fino a trovare qualcosa (cioè rompere o tornare). Naturalmente, come gli altri commenti annotati, è necessario definire tale condizione di terminazione o funzionerà per sempre.
cclogg

16

Ecco una soluzione O (1) per trovare la posizione in una spirale quadrata: Fiddle

function spiral(n) {
    // given n an index in the squared spiral
    // p the sum of point in inner square
    // a the position on the current square
    // n = p + a

    var r = Math.floor((Math.sqrt(n + 1) - 1) / 2) + 1;

    // compute radius : inverse arithmetic sum of 8+16+24+...=
    var p = (8 * r * (r - 1)) / 2;
    // compute total point on radius -1 : arithmetic sum of 8+16+24+...

    var en = r * 2;
    // points by face

    var a = (1 + n - p) % (r * 8);
    // compute de position and shift it so the first is (-r,-r) but (-r+1,-r)
    // so square can connect

    var pos = [0, 0, r];
    switch (Math.floor(a / (r * 2))) {
        // find the face : 0 top, 1 right, 2, bottom, 3 left
        case 0:
            {
                pos[0] = a - r;
                pos[1] = -r;
            }
            break;
        case 1:
            {
                pos[0] = r;
                pos[1] = (a % en) - r;

            }
            break;
        case 2:
            {
                pos[0] = r - (a % en);
                pos[1] = r;
            }
            break;
        case 3:
            {
                pos[0] = -r;
                pos[1] = r - (a % en);
            }
            break;
    }
    console.log("n : ", n, " r : ", r, " p : ", p, " a : ", a, "  -->  ", pos);
    return pos;
}

3
Per iniziare dal centro aggiungere due righe. if (n === 0) return [0, 0, r]; --n;Vedi violino: jsfiddle.net/Wishmesh/nwd9gt1s/2
Maris B.

15

Adoro i generatori di Python.

def spiral(N, M):
    x,y = 0,0   
    dx, dy = 0, -1

    for dumb in xrange(N*M):
        if abs(x) == abs(y) and [dx,dy] != [1,0] or x>0 and y == 1-x:  
            dx, dy = -dy, dx            # corner, change direction

        if abs(x)>N/2 or abs(y)>M/2:    # non-square
            dx, dy = -dy, dx            # change direction
            x, y = -y+dx, x+dy          # jump

        yield x, y
        x, y = x+dx, y+dy

Test con:

print 'Spiral 3x3:'
for a,b in spiral(3,3):
    print (a,b),

print '\n\nSpiral 5x3:'
for a,b in spiral(5,3):
    print (a,b),

Ottieni:

Spiral 3x3:
(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1) 

Spiral 5x3:
(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1) (2, -1) (2, 0) (2, 1) (-2, 1) (-2, 0) (-2, -1)

8

Tentativo "Code golf" a spirale Java, basato sulla variante C ++.

public static void Spiral(int X, int Y) {
    int x=0, y=0, dx = 0, dy = -1;
    int t = Math.max(X,Y);
    int maxI = t*t;

    for (int i=0; i < maxI; i++){
        if ((-X/2 <= x) && (x <= X/2) && (-Y/2 <= y) && (y <= Y/2)) {
            System.out.println(x+","+y);
            //DO STUFF
        }

        if( (x == y) || ((x < 0) && (x == -y)) || ((x > 0) && (x == 1-y))) {
            t=dx; dx=-dy; dy=t;
        }   
        x+=dx; y+=dy;
    }
}

7

Ecco una soluzione C ++ che mostra che puoi calcolare le coordinate successive (x, y) direttamente e facilmente da quelle precedenti, senza bisogno di tracciare la direzione, il raggio o qualsiasi altra cosa:

void spiral(const int M, const int N)
{
    // Generate an Ulam spiral centered at (0, 0).
    int x = 0;
    int y = 0;

    int end = max(N, M) * max(N, M);
    for(int i = 0; i < end; ++i)
    {
        // Translate coordinates and mask them out.
        int xp = x + N / 2;
        int yp = y + M / 2;
        if(xp >= 0 && xp < N && yp >= 0 && yp < M)
            cout << xp << '\t' << yp << '\n';

        // No need to track (dx, dy) as the other examples do:
        if(abs(x) <= abs(y) && (x != y || x >= 0))
            x += ((y >= 0) ? 1 : -1);
        else
            y += ((x >= 0) ? -1 : 1);
    }
}

Se tutto ciò che stai cercando di fare è generare i primi N punti nella spirale (senza il vincolo del problema originale di mascherare una regione N x M), il codice diventa molto semplice:

void spiral(const int N)
{
    int x = 0;
    int y = 0;
    for(int i = 0; i < N; ++i)
    {
        cout << x << '\t' << y << '\n';
        if(abs(x) <= abs(y) && (x != y || x >= 0))
            x += ((y >= 0) ? 1 : -1);
        else
            y += ((x >= 0) ? -1 : 1);
    }
}

Il trucco è che puoi confrontare xey per determinare da che parte del quadrato ti trovi e che ti dice in quale direzione muoverti.


5

TDD, in Java.

SpiralTest.java:

import java.awt.Point;
import java.util.List;

import junit.framework.TestCase;

public class SpiralTest extends TestCase {

    public void test3x3() throws Exception {
        assertEquals("(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1)", strung(new Spiral(3, 3).spiral()));
    }

    public void test5x3() throws Exception {
        assertEquals("(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1) (2, -1) (2, 0) (2, 1) (-2, 1) (-2, 0) (-2, -1)",
                strung(new Spiral(5, 3).spiral()));
    }

    private String strung(List<Point> points) {
        StringBuffer sb = new StringBuffer();
        for (Point point : points)
            sb.append(strung(point));
        return sb.toString().trim();
    }

    private String strung(Point point) {
        return String.format("(%s, %s) ", point.x, point.y);
    }

}

Spiral.java:

import java.awt.Point;
import java.util.ArrayList;
import java.util.List;

public class Spiral {
    private enum Direction {
    E(1, 0) {Direction next() {return N;}},
    N(0, 1) {Direction next() {return W;}},
    W(-1, 0) {Direction next() {return S;}},
    S(0, -1) {Direction next() {return E;}},;

        private int dx;
        private int dy;

        Point advance(Point point) {
            return new Point(point.x + dx, point.y + dy);
        }

        abstract Direction next();

        Direction(int dx, int dy) {
            this.dx = dx;
            this.dy = dy;
        }
    };
    private final static Point ORIGIN = new Point(0, 0);
    private final int   width;
    private final int   height;
    private Point       point;
    private Direction   direction   = Direction.E;
    private List<Point> list = new ArrayList<Point>();

    public Spiral(int width, int height) {
        this.width = width;
        this.height = height;
    }

    public List<Point> spiral() {
        point = ORIGIN;
        int steps = 1;
        while (list.size() < width * height) {
            advance(steps);
            advance(steps);
            steps++;
        }
        return list;
    }

    private void advance(int n) {
        for (int i = 0; i < n; ++i) {
            if (inBounds(point))
                list.add(point);
            point = direction.advance(point);
        }
        direction = direction.next();
    }

    private boolean inBounds(Point p) {
        return between(-width / 2, width / 2, p.x) && between(-height / 2, height / 2, p.y);
    }

    private static boolean between(int low, int high, int n) {
        return low <= n && n <= high;
    }
}

@leppie: Forse no - certamente non abbastanza breve - ma penso che sia una buona dimostrazione di TDD, e un codice ragionevolmente pulito, facile da capire e corretto. Lo lascerò dentro.
Carl Manaster il

4

Ecco la mia soluzione (in Ruby)

def spiral(xDim, yDim)
   sx = xDim / 2
   sy = yDim / 2

   cx = cy = 0
   direction = distance = 1

   yield(cx,cy)
   while(cx.abs <= sx || cy.abs <= sy)
      distance.times { cx += direction; yield(cx,cy) if(cx.abs <= sx && cy.abs <= sy); } 
      distance.times { cy += direction; yield(cx,cy) if(cx.abs <= sx && cy.abs <= sy); } 
      distance += 1
      direction *= -1
   end
end

spiral(5,3) { |x,y|
   print "(#{x},#{y}),"
}

Ancora O (max (n, m) ^ 2), ma bello stile.
Trittico

1
direction = -direction invece di direction * = - 1? se stavi giocando a golf d = -d è più corto di d * = - anche 1
John La Rooy,

3

Haskell, fai la tua scelta:

spiral x y = (0, 0) : concatMap ring [1 .. max x' y'] where
    ring n | n > x' = left x' n  ++ right x' (-n)
    ring n | n > y' = up   n  y' ++ down (-n) y'
    ring n          = up n n ++ left n n ++ down n n ++ right n n
    up    x y = [(x, n) | n <- [1-y .. y]]; down = (.) reverse . up
    right x y = [(n, y) | n <- [1-x .. x]]; left = (.) reverse . right
    (x', y') = (x `div` 2, y `div` 2)

spiral x y = filter (\(x',y') -> 2*abs x' <= x && 2*abs y' <= y) .
             scanl (\(a,b) (c,d) -> (a+c,b+d)) (0,0) $
             concat [ (:) (1,0) . tail 
                    $ concatMap (replicate n) [(0,1),(-1,0),(0,-1),(1,0)]
                    | n <- [2,4..max x y] ]

22
Per favore, non prenderlo come un commento di un troll o di un troll, ma DIO è brutto haskell!
Petruza,

1
Non potrei essere più d'accordo con il commento sopra.
Sneakyness,

Questo Haskell sembra molto alla moda per me.

1
Sì, ma nota quanto sia espressivo. Confronta la sua lunghezza con alcuni degli altri esempi pubblicati qui.
Robert Harvey,

@Petruza In realtà, non è la soluzione migliore in Haskell. Dai un'occhiata qui: rosettacode.org/wiki/Spiral_matrix#Haskell
polkovnikov.ph

2

Questo è in C.

Mi è capitato di scegliere nomi di variabili errati. Nei nomi T == in alto, L == a sinistra, B == in basso, R == a destra. Quindi, tli è in alto a sinistra i e brj è in basso a destra j.

#include<stdio.h>

typedef enum {
   TLTOR = 0,
   RTTOB,
   BRTOL,
   LBTOT
} Direction;

int main() {
   int arr[][3] = {{1,2,3},{4,5,6}, {7,8,9}, {10,11,12}};
   int tli = 0, tlj = 0, bri = 3, brj = 2;
   int i;
   Direction d = TLTOR;

   while (tli < bri || tlj < brj) {
     switch (d) {
     case TLTOR:
    for (i = tlj; i <= brj; i++) {
       printf("%d ", arr[tli][i]);
    }
    tli ++;
    d = RTTOB;
    break;
     case RTTOB:
    for (i = tli; i <= bri; i++) {
       printf("%d ", arr[i][brj]);
    }
    brj --;
    d = BRTOL;
    break;
     case BRTOL:
    for (i = brj; i >= tlj; i--) {
       printf("%d ", arr[bri][i]);
    }
    bri --;
        d = LBTOT;
    break;
     case LBTOT:
    for (i = bri; i >= tli; i--) {
       printf("%d ", arr[i][tlj]);
    }
    tlj ++;
        d = TLTOR;
    break;
 }
   }
   if (tli == bri == tlj == brj) {
      printf("%d\n", arr[tli][tlj]);
   }
}

2

Ho una libreria open source, pixelscan , che è una libreria Python che fornisce funzioni per scansionare i pixel su una griglia in una varietà di modelli spaziali. I modelli spaziali inclusi sono circolari, anelli, griglie, serpenti e passeggiate casuali. Esistono anche varie trasformazioni (ad es. Clip, swap, rotazione, traduzione). Il problema OP originale può essere risolto come segue

for x, y in clip(swap(ringscan(0, 0, 0, 2)), miny=-1, maxy=1):
    print x, y

che dà i punti

(0,0) (1,0) (1,1) (0,1) (-1,1) (-1,0) (-1,-1) (0,-1) (1,-1) (2,0) (2,1) (-2,1) (-2,0)
(-2,-1) (2,-1)

I generatori e le trasformazioni delle librerie possono essere concatenati per cambiare i punti in una grande varietà di ordini e modelli spaziali.


2

Ecco una soluzione in Python 3 per la stampa di numeri interi consecutivi in ​​una spirale in senso orario e antiorario.

import math

def sp(n): # spiral clockwise
    a=[[0 for x in range(n)] for y in range(n)]
    last=1
    for k in range(n//2+1):
      for j in range(k,n-k):
          a[k][j]=last
          last+=1
      for i in range(k+1,n-k):
          a[i][j]=last
          last+=1
      for j in range(n-k-2,k-1,-1):
          a[i][j]=last
          last+=1
      for i in range(n-k-2,k,-1):
          a[i][j]=last
          last+=1

    s=int(math.log(n*n,10))+2 # compute size of cell for printing
    form="{:"+str(s)+"}"
    for i in range(n):
        for j in range(n):
            print(form.format(a[i][j]),end="")
        print("")

sp(3)
# 1 2 3
# 8 9 4
# 7 6 5

sp(4)
#  1  2  3  4
# 12 13 14  5
# 11 16 15  6
# 10  9  8  7

def sp_cc(n): # counterclockwise
    a=[[0 for x in range(n)] for y in range(n)]
    last=1
    for k in range(n//2+1):
      for j in range(n-k-1,k-1,-1):
          a[n-k-1][j]=last
          last+=1
      for i in range(n-k-2,k-1,-1):
          a[i][j]=last
          last+=1
      for j in range(k+1,n-k):
          a[i][j]=last
          last+=1
      for i in range(k+1,n-k-1):
          a[i][j]=last
          last+=1

    s=int(math.log(n*n,10))+2 # compute size of cell for printing
    form="{:"+str(s)+"}"
    for i in range(n):
        for j in range(n):
            print(form.format(a[i][j]),end="")
        print("")

sp_cc(5)
#  9 10 11 12 13
#  8 21 22 23 14
#  7 20 25 24 15
#  6 19 18 17 16
#  5  4  3  2  1

Spiegazione

Una spirale è composta da quadrati concentrici, ad esempio un quadrato 5x5 con rotazione in senso orario si presenta così:

 5x5        3x3      1x1

>>>>>
^   v       >>>
^   v   +   ^ v   +   >
^   v       <<<
<<<<v

( >>>>>significa "vai 5 volte a destra" o aumenta l'indice di colonna 5 volte,v significa giù o aumenta l'indice di riga, ecc.)

Tutti i quadrati sono uguali fino alle loro dimensioni, ho avvolto i quadrati concentrici.

Per ogni quadrato il codice ha quattro loop (uno per ogni lato), in ciascun loop aumentiamo o diminuiamo le colonne o l'indice di riga. Se iè l'indice di riga e jl'indice di colonna, è possibile costruire un quadrato 5x5: - incrementando jda 0 a 4 (5 volte) - incrementando ida 1 a 4 (4 volte) - diminuendo jda 3 a 0 (4 volte) - diminuendoi da 3 a 1 (3 volte)

Per i quadrati successivi (3x3 e 1x1) facciamo lo stesso ma spostiamo gli indici iniziale e finale in modo appropriato. Ho usato un indicek per ogni quadrato concentrico, ci sono n // 2 + 1 quadrati concentrici.

Infine, un po 'di matematica per la bella stampa.

Per stampare gli indici:

def spi_cc(n): # counter-clockwise
    a=[[0 for x in range(n)] for y in range(n)]
    ind=[]
    last=n*n
    for k in range(n//2+1):
      for j in range(n-k-1,k-1,-1):
          ind.append((n-k-1,j))
      for i in range(n-k-2,k-1,-1):
          ind.append((i,j))
      for j in range(k+1,n-k):
          ind.append((i,j))
      for i in range(k+1,n-k-1):
          ind.append((i,j))

    print(ind)

spi_cc(5)

1

Ecco c #, linq'ish.

public static class SpiralCoords
{
  public static IEnumerable<Tuple<int, int>> GenerateOutTo(int radius)
  {
    //TODO trap negative radius.  0 is ok.

    foreach(int r in Enumerable.Range(0, radius + 1))
    {
      foreach(Tuple<int, int> coord in GenerateRing(r))
      {
        yield return coord;
      }
    }
  }

  public static IEnumerable<Tuple<int, int>> GenerateRing(int radius)
  {
    //TODO trap negative radius.  0 is ok.

    Tuple<int, int> currentPoint = Tuple.Create(radius, 0);
    yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);

    //move up while we can
    while (currentPoint.Item2 < radius)
    {
      currentPoint.Item2 += 1;
      yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);
    }
    //move left while we can
    while (-radius < currentPoint.Item1)
    {
      currentPoint.Item1 -=1;
      yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);    
    }
    //move down while we can
    while (-radius < currentPoint.Item2)
    {
      currentPoint.Item2 -= 1;
      yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);
    }
    //move right while we can
    while (currentPoint.Item1 < radius)
    {
      currentPoint.Item1 +=1;
      yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);    
    }
    //move up while we can
    while (currentPoint.Item2 < -1)
    {
      currentPoint.Item2 += 1;
      yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);
    }
  }

}

Il primo esempio della domanda (3x3) sarebbe:

var coords = SpiralCoords.GenerateOutTo(1);

Il secondo esempio della domanda (5x3) sarebbe:

var coords = SpiralCoords.GenerateOutTo(2).Where(x => abs(x.Item2) < 2);

1

Questa è una versione leggermente diversa - cercando di usare recursione iteratorsin LUA. Ad ogni passo il programma scende ulteriormente all'interno della matrice e dei loop. Ho anche aggiunto una bandiera extra a spirale clockwiseo anticlockwise. L'output inizia dagli angoli in basso a destra e scorre in modo ricorsivo verso il centro.

local row, col, clockwise

local SpiralGen
SpiralGen = function(loop)  -- Generator of elements in one loop
    local startpos = { x = col - loop, y = row - loop }
    local IteratePosImpl = function() -- This function calculates returns the cur, next position in a loop. If called without check, it loops infinitely

        local nextpos = {x = startpos.x, y = startpos.y}        
        local step = clockwise and {x = 0, y = -1} or { x = -1, y = 0 }

        return function()

            curpos = {x = nextpos.x, y = nextpos.y}
            nextpos.x = nextpos.x + step.x
            nextpos.y = nextpos.y + step.y
            if (((nextpos.x == loop or nextpos.x == col - loop + 1) and step.y == 0) or 
                ((nextpos.y == loop or nextpos.y == row - loop + 1) and step.x == 0)) then --Hit a corner in the loop

                local tempstep = {x = step.x, y = step.y}
                step.x = clockwise and tempstep.y or -tempstep.y
                step.y = clockwise and -tempstep.x or tempstep.x
                -- retract next step with new step
                nextpos.x = curpos.x + step.x 
                nextpos.y = curpos.y + step.y

            end         
            return curpos, nextpos
        end
    end
    local IteratePos = IteratePosImpl() -- make an instance
    local curpos, nextpos = IteratePos()
    while (true) do
        if(nextpos.x == startpos.x and nextpos.y == startpos.y) then            
            coroutine.yield(curpos)
            SpiralGen(loop+1) -- Go one step inner, since we're done with this loop
            break -- done with inner loop, get out
        else
            if(curpos.x < loop + 1 or curpos.x > col - loop or curpos.y < loop + 1 or curpos.y > row - loop) then
                break -- done with all elemnts, no place to loop further, break out of recursion
            else
                local curposL = {x = curpos.x, y = curpos.y}
                curpos, nextpos = IteratePos()
                coroutine.yield(curposL)
            end
        end     
    end 
end


local Spiral = function(rowP, colP, clockwiseP)
    row = rowP
    col = colP
    clockwise = clockwiseP
    return coroutine.wrap(function() SpiralGen(0) end) -- make a coroutine that returns all the values as an iterator
end


--test
for pos in Spiral(10,2,true) do
    print (pos.y, pos.x)
end

for pos in Spiral(10,9,false) do
    print (pos.y, pos.x)
end

1

// Implementazione di PHP

function spiral($n) {

    $r = intval((sqrt($n + 1) - 1) / 2) + 1;

    // compute radius : inverse arithmetic sum of 8+16+24+...=
    $p = (8 * $r * ($r - 1)) / 2;
    // compute total point on radius -1 : arithmetic sum of 8+16+24+...

    $en = $r * 2;
    // points by face

    $a = (1 + $n - $p) % ($r * 8);
    // compute de position and shift it so the first is (-r,-r) but (-r+1,-r)
    // so square can connect

    $pos = array(0, 0, $r);
    switch (intval($a / ($r * 2))) {
        // find the face : 0 top, 1 right, 2, bottom, 3 left
        case 0:
            $pos[0] = $a - $r;
            $pos[1] = -$r;
            break;
        case 1:
            $pos[0] = $r;
            $pos[1] = ($a % $en) - $r;
            break;
        case 2:
            $pos[0] = $r - ($a % $en);
            $pos[1] = $r;
            break;
        case 3:
            $pos[0] = -$r;
            $pos[1] = $r - ($a % $en);
            break;
    }
    return $pos;
}

for ($i = 0; $i < 168; $i++) {

    echo '<pre>';
    print_r(spiral($i));
    echo '</pre>';
}

1

Ecco una soluzione iterativa JavaScript (ES6) a questo problema:

let spiralMatrix = (x, y, step, count) => {
    let distance = 0;
    let range = 1;
    let direction = 'up';

    for ( let i = 0; i < count; i++ ) {
        console.log('x: '+x+', y: '+y);
        distance++;
        switch ( direction ) {
            case 'up':
                y += step;
                if ( distance >= range ) {
                    direction = 'right';
                    distance = 0;
                }
                break;
            case 'right':
                x += step;
                if ( distance >= range ) {
                    direction = 'bottom';
                    distance = 0;
                    range += 1;
                }
                break;
            case 'bottom':
                y -= step;
                if ( distance >= range ) {
                    direction = 'left';
                    distance = 0;
                }
                break;
            case 'left':
                x -= step;
                if ( distance >= range ) {
                    direction = 'up';
                    distance = 0;
                    range += 1;
                }
                break;
            default:
                break;
        }
    }
}

Ecco come usarlo:

spiralMatrix(0, 0, 1, 100);

Questo creerà una spirale verso l'esterno, a partire dalle coordinate (x = 0, y = 0) con il passo di 1 e un numero totale di elementi pari a 100. L'implementazione avvia sempre il movimento nel seguente ordine: su, destra, fondo, sinistra.

Si noti che questa implementazione crea matrici quadrate.


1

Ecco una risposta in Julia: il mio approccio è quello di assegnare i punti in quadrati concentrici ('spirali') intorno all'origine (0,0), dove ogni quadrato ha una lunghezza laterale m = 2n + 1, per produrre un dizionario ordinato con numeri di posizione (a partire da 1 per l'origine) come chiavi e la coordinata corrispondente come valore.

Poiché la posizione massima per spirale è in corrispondenza (n,-n), il resto dei punti può essere trovato semplicemente lavorando all'indietro da questo punto, cioè dall'angolo in basso a destra per m-1unità, quindi ripetendo per i 3 segmenti perpendicolari dim-1 unità.

Questo processo è scritto in ordine inverso di seguito, corrispondente a come procede la spirale piuttosto che a questo processo di conteggio inverso, ovvero il rasegmento [ascendente destro] è decrementato di 3(m+1), quindi la[sinistro ascendente] di 2(m+1), e così via - si spera che questo si spieghi da solo .

import DataStructures: OrderedDict, merge

function spiral(loc::Int)
    s = sqrt(loc-1) |> floor |> Int
    if s % 2 == 0
        s -= 1
    end
    s = (s+1)/2 |> Int
    return s
end

function perimeter(n::Int)
    n > 0 || return OrderedDict([1,[0,0]])
    m = 2n + 1 # width/height of the spiral [square] indexed by n
    # loc_max = m^2
    # loc_min = (2n-1)^2 + 1
    ra = [[m^2-(y+3m-3), [n,n-y]] for y in (m-2):-1:0]
    la = [[m^2-(y+2m-2), [y-n,n]] for y in (m-2):-1:0]
    ld = [[m^2-(y+m-1), [-n,y-n]] for y in (m-2):-1:0]
    rd = [[m^2-y, [n-y,-n]] for y in (m-2):-1:0]
    return OrderedDict(vcat(ra,la,ld,rd))
end

function walk(n)
    cds = OrderedDict(1 => [0,0])
    n > 0 || return cds
    for i in 1:n
        cds = merge(cds, perimeter(i))
    end
    return cds
end

Quindi, per il tuo primo esempio, collegando m = 3l'equazione per trovare n dà n = (5-1)/2 = 2e walk(2)fornisce un dizionario ordinato di posizioni alle coordinate, che puoi trasformare in una semplice matrice di coordinate accedendo al valscampo del dizionario :

walk(2)
DataStructures.OrderedDict{Any,Any} with 25 entries:
  1  => [0,0]
  2  => [1,0]
  3  => [1,1]
  4  => [0,1]
    => 

[(co[1],co[2]) for co in walk(2).vals]
25-element Array{Tuple{Int64,Int64},1}:
 (0,0)  
 (1,0)  
        
 (1,-2) 
 (2,-2)

Si noti che per alcune funzioni [ad es. norm] Può essere preferibile lasciare le coordinate in array piuttosto che Tuple{Int,Int}, ma qui le cambio in tuple (x,y)- come richiesto, usando la comprensione dell'elenco.

Non viene specificato il contesto per "supportare" una matrice non quadrata (si noti che questa soluzione calcola ancora i valori off-grid), ma se si desidera filtrare solo l'intervallo xper y(qui per x=5, y=3) dopo aver calcolato la spirale completa quindi intersectquesta matrice contro i valori di walk.

grid = [[x,y] for x in -2:2, y in -1:1]
5×3 Array{Array{Int64,1},2}:
 [-2,-1]  [-2,0]  [-2,1]
                  
 [2,-1]   [2,0]   [2,1]

[(co[1],co[2]) for co in intersect(walk(2).vals, grid)]
15-element Array{Tuple{Int64,Int64},1}:
 (0,0)  
 (1,0)  
  
 (-2,0) 
 (-2,-1)

1

La tua domanda sembra una domanda chiamata memoria a spirale. In quel problema, ogni quadrato sulla griglia è assegnato in un modello a spirale a partire dal numero 1 che individua all'origine. E poi contando mentre spirale verso l'esterno. Per esempio:

17  16  15  14  13

18   5   4   3  12

19   6   1   2  11

20   7   8   9  10

21  22  23  ---->

La mia soluzione per calcolare le coordinate di ciascun numero seguendo questo schema a spirale è pubblicata di seguito:

def spiral_pattern(num):
    x = y = 0
    for _ in range(num-1):
        x, y = find_next(x, y)
    yield (x, y)


def find_next(x, y):
    """find the coordinates of the next number"""
    if x == 0 and y == 0:
        return 1, 0

    if abs(x) == abs(y):
        if x > 0 and y > 0:
            x, y = left(x, y)
        elif x < 0 and y > 0:
            x, y = down(x, y)
        elif x < 0 and y < 0:
            x, y = right(x, y)
        elif x > 0 and y < 0:
            x, y = x+1, y
    else:
        if x > y and abs(x) > abs(y):
            x, y = up(x, y)
        elif x < y and abs(x) < abs(y):
            x, y = left(x, y)
        elif x < y and abs(x) > abs(y):
            x, y = down(x, y)
        elif x > y and abs(x) < abs(y):
            x, y = right(x, y)

    return x, y

def up(x, y):
    return x, y+1


def down(x, y):
    return x, y-1


def left(x, y):
    return x-1, y


def right(x, y):
    return x+1, y

0

Questo si basa sulla tua soluzione, ma possiamo essere più intelligenti nel trovare gli angoli. Ciò semplifica la visualizzazione di come saltare le aree esterne se M e N sono molto diversi.

def spiral(X, Y):
    x = y = 0
    dx = 0
    dy = -1
    s=0
    ds=2
    for i in range(max(X, Y)**2):
            if abs(x) <= X and abs(y) <= Y/2:
                    print (x, y)
                    # DO STUFF...
            if i==s:
                    dx, dy = -dy, dx
                    s, ds = s+ds/2, ds+1
            x, y = x+dx, y+dy

e una soluzione basata su generatore che è migliore di O (max (n, m) ^ 2), è O (nm + abs (nm) ^ 2) perché salta intere strisce se non fanno parte della soluzione.

def spiral(X,Y):
X = X+1>>1
Y = Y+1>>1
x = y = 0
d = side = 1
while x<X or y<Y:
    if abs(y)<Y:
        for x in range(x, x+side, d):
            if abs(x)<X: yield x,y
        x += d
    else:
        x += side
    if abs(x)<X:
        for y in range(y, y+side, d):
            if abs(y)<Y: yield x,y
        y += d
    else:
        y += side
    d =-d
    side = d-side

0
Here is my attempt for simple C solution. First print the outer spiral and move one block inside..and repeat.

#define ROWS        5
#define COLS        5
//int A[ROWS][COLS] = { {1, 2, 3, 4}, {5, 6, 7, 8}, {11, 12, 13, 14}, {15, 16, 17, 18} };
//int A[ROWS][COLS] = { {1, 2, 3}, {6, 7, 8}, { 12, 13, 14} };
//int A[ROWS][COLS] = { {1, 2}, {3, 4}};

int A[ROWS][COLS] = { {1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15} , {16, 17, 18, 19, 20}, {21, 22, 23, 24, 25} };


void print_spiral(int rows, int cols)
{
    int row = 0;
    int offset = 0;

    while (offset < (ROWS - 1)) {
        /* print one outer loop at a time. */
        for (int col = offset; col <= cols; col++) {
            printf("%d ", A[offset][col]);
        }

        for (row = offset + 1; row <= rows; row++) {
            printf("%d ", A[row][cols]);
        }

        for (int col = cols - 1; col >= offset; col--) {
            printf("%d ", A[rows][col]);
        }

        for (row = rows - 1; row >= offset + 1; row--) {
            printf("%d ", A[row][offset]);
        }

       /* Move one block inside */
        offset++;
        rows--;
        cols--;
    }
    printf("\n");
}

int _tmain(int argc, _TCHAR* argv[])
{
    print_spiral(ROWS-1, COLS-1);
    return 0;
}

0

Questa è la mia pessima soluzione, fatta da una minima conoscenza di Java. Qui devo posizionare le unità su un campo in una spirale. Le unità non possono essere posizionate sopra altre unità o sulle montagne o nell'oceano.

Per essere chiari. Questa non è una buona soluzione. Questa è una pessima soluzione aggiunta per il divertimento di altre persone di ridere di quanto si possa fare male

private void unitPlacementAlgorithm(Position p, Unit u){
    int i = p.getRow();
    int j = p.getColumn();

    int iCounter = 1;
    int jCounter = 0;

    if (getUnitAt(p) == null) {
            unitMap.put(p, u);
    } else {
        iWhileLoop(i, j, iCounter, jCounter, -1, u);
    }

}

private void iWhileLoop(int i, int j, int iCounter, int jCounter, int fortegn, Unit u){
    if(iCounter == 3) {
        for(int k = 0; k < 3; k++) {
            if(k == 2) { //This was added to make the looping stop after 9 units
                System.out.println("There is no more room around the city");
                return; 
            }
            i--;

            if (getUnitAt(new Position(i, j)) == null 
                && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.OCEANS)) 
                && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.MOUNTAINS))) {
                    unitMap.put(new Position(i, j), u);
                    return;
            }
            iCounter--;
        }
    }

    while (iCounter > 0) {
        if (fortegn > 0) {
            i++;
        } else {
            i--;
        }

        if (getUnitAt(new Position(i, j)) == null 
            && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.OCEANS)) 
            && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.MOUNTAINS))) {
                unitMap.put(new Position(i, j), u);
                return;
        }
        iCounter--;
        jCounter++;
    }
    fortegn *= -1;
    jWhileLoop(i, j, iCounter, jCounter, fortegn, u);
}

private void jWhileLoop(int i, int j, int iCounter, int jCounter,
        int fortegn, Unit u) {
    while (jCounter > 0) {
        if (fortegn > 0) {
            j++;
        } else {
            j--;
        }

        if (getUnitAt(new Position(i, j)) == null 
            && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.OCEANS)) 
            && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.MOUNTAINS))) {
                unitMap.put(new Position(i, j), u);
                return;

        }
        jCounter--;
        iCounter++;
        if (jCounter == 0) {
            iCounter++;
        }

    }
    iWhileLoop(i, j, iCounter, jCounter, fortegn, u);
}

Complimenti a chiunque sappia davvero leggere questo

Domanda bonus: qual è il tempo di esecuzione di questo "algoritmo"? : P


1
+1 a causa di " Questa è una pessima soluzione aggiunta per il divertimento di altre persone di ridere di quanto si possa fare male ".
Oriol

0

Soluzione per AutoIt

#include <Math.au3>
#include <Array.au3>

Func SpiralSearch($xMax,$yMax)
    $x = 0
    $y = 0
    $dx = 0
    $dy = -1
    for $i=0 To _max($xMax, $yMax)^2-1 Step 1
        if -$xMax/2 < $x and $x <= $xMax/2 And -$yMax/2 < $y And $y <= $yMax/2 Then
            MsgBox(0, "We are here ", $x & " " & $y)
        EndIf
        if $x == $y or ($x < 0 and $x == -$y) or ($x > 0 and $x == 1-$y) Then
            _ArraySwap ($dx, $dy)
            $dx=-$dx
        EndIf
        $x += $dx
        $y += $dy
    Next
EndFunc

0

Di recente ho avuto una sfida simile in cui ho dovuto creare un array 2D e utilizzare un algoritmo a matrice spirale per ordinare e stampare i risultati. Questo codice C # funzionerà con un array N, N 2D. È dettagliato per chiarezza e può essere probabilmente ripensato per adattarsi alle tue esigenze.

//CREATE A NEW MATRIX OF SIZE 4 ROWS BY 4 COLUMNS - SCALE MATRIX SIZE HERE
SpiralMatrix SM = new SpiralMatrix(4, 4);
string myData = SM.Read();


public class SpiralMatrix
{
    //LETS BUILD A NEW MATRIX EVERY TIME WE INSTANTIATE OUR CLASS
    public SpiralMatrix(int Rows, int Cols)
    {
        Matrix = new String[Rows, Cols];

        int pos = 1;
        for(int r = 0; r<Rows; r++){
            for (int c = 0; c < Cols; c++)
            {
                //POPULATE THE MATRIX WITH THE CORRECT ROW,COL COORDINATE
                Matrix[r, c] = pos.ToString();
                pos++;
            }
        }
    }

    //READ MATRIX
    public string Read()
    {
        int Row = 0;
        int Col = 0;

        string S = "";
        bool isDone = false;

        //CHECK tO SEE IF POSITION ZERO IS AVAILABLE
        if(PosAvailable(Row, Col)){
            S = ConsumePos(Row, Col);
        }


        //START READING SPIRAL
        //THIS BLOCK READS A FULL CYCLE OF RIGHT,DOWN,LEFT,UP EVERY ITERATION
        while(!isDone)
        {
            bool goNext = false;

            //READ ALL RIGHT SPACES ON THIS PATH PROGRESSION
            while (PosAvailable(Row, Col+1))
            {
                //Is ReadRight Avail
                Col++;
                S += ConsumePos(Row, Col);
                goNext = true;
            }

            //READ ALL DOWN SPACES ON THIS PATH PROGRESSION
            while(PosAvailable(Row+1, Col)){
                //Is ReadDown Avail
                Row++;
                S += ConsumePos(Row, Col);
                goNext = true;
            }

            //READ ALL LEFT SPACES ON THIS PATH PROGRESSION
            while(PosAvailable(Row, Col-1)){
                //Is ReadLeft Avail
                Col--;
                S += ConsumePos(Row, Col);
                goNext = true;
            }

            //READ ALL UP SPACES ON THIS PATH PROGRESSION
            while(PosAvailable(Row-1, Col)){
                //Is ReadUp Avail
                Row--;
                S += ConsumePos(Row, Col);
                goNext = true;
            }

            if(!goNext){
                //DONE - SET EXIT LOOP FLAG
                isDone = true;
            }
        }

        return S;
    }

    //DETERMINE IF THE POSITION IS AVAILABLE
    public bool PosAvailable(int Row, int Col)
    {
        //MAKE SURE WE ARE WITHIN THE BOUNDS OF THE ARRAY
        if (Row < Matrix.GetLength(0) && Row >= 0
            && Col < Matrix.GetLength(1) && Col >= 0)
        {
            //CHECK COORDINATE VALUE
            if (Matrix[Row, Col] != ConsumeChar)
                return true;
            else
                return false;
        }
        else
        {
            //WE ARE OUT OF BOUNDS
            return false;
        }
    }

    public string ConsumePos(int Row, int Col)
    {
        string n = Matrix[Row, Col];
        Matrix[Row, Col] = ConsumeChar;
        return n;
    }

    public string ConsumeChar = "X";
    public string[,] Matrix;
}

0

L'ho realizzato con un amico che regola la spirale sulle proporzioni della tela su Javascript. La migliore soluzione che ho ottenuto per l'evoluzione dell'immagine pixel per pixel, riempiendo l'intera immagine.

Spero che aiuti qualcuno.

var width = 150;
var height = 50;

var x = -(width - height)/2;
var y = 0;
var dx = 1;
var dy = 0;
var x_limit = (width - height)/2;
var y_limit = 0;
var counter = 0;

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext('2d');

setInterval(function(){
   if ((-width/2 < x && x <= width/2)  && (-height/2 < y && y <= height/2)) {
       console.log("[ " + x + " , " +  y + " ]");
       ctx.fillStyle = "#FF0000";
       ctx.fillRect(width/2 + x, height/2 - y,1,1);
   }
   if( dx > 0 ){//Dir right
       if(x > x_limit){
           dx = 0;
           dy = 1;
       }
   }
   else if( dy > 0 ){ //Dir up
       if(y > y_limit){
           dx = -1;
           dy = 0;
       }
   }
   else if(dx < 0){ //Dir left
       if(x < (-1 * x_limit)){
           dx = 0;
           dy = -1;
       }
   }
   else if(dy < 0) { //Dir down
       if(y < (-1 * y_limit)){
           dx = 1;
           dy = 0;
           x_limit += 1;
           y_limit += 1;
       }
   }
   counter += 1;
   //alert (counter);
   x += dx;
   y += dy;      
}, 1);

Puoi vederlo funzionare su http://jsfiddle.net/hitbyatruck/c4Kd6/ . Assicurati solo di modificare la larghezza e l'altezza della tela sui javascript e sugli attributi sull'HTML.


0

Solo per divertimento in Javascript:

function spiral(x, y) {
  var iy = ix = 0
    , hr = (x - 1) / 2
    , vr = (y - 1) / 2
    , tt = x * y
    , matrix = []
    , step = 1
    , dx = 1
    , dy = 0;

  while(matrix.length < tt) {

    if((ix <= hr && ix >= (hr * -1)) && (iy <= vr && (iy >= (vr * -1)))) {
      console.log(ix, iy);
      matrix.push([ix, iy]);
    }

    ix += dx;
    iy += dy;

    // check direction
    if(dx !== 0) {
      // increase step
      if(ix === step && iy === (step * -1)) step++;

      // horizontal range reached
      if(ix === step || (ix === step * -1)) {
        dy = (ix === iy)? (dx * -1) : dx;
        dx = 0;  
      }
    } else {
      // vertical range reached
      if(iy === step || (iy === step * -1)) {
        dx = (ix === iy)? (dy * -1) : dy;
        dy = 0;
      }
    }
  }

  return matrix;
}

var sp = spiral(5, 3);

0

Versione C #, gestisce anche dimensioni non quadrate.

private static Point[] TraverseSpiral(int width, int height) {
    int numElements = width * height + 1;
    Point[] points = new Point[numElements];

    int x = 0;
    int y = 0;
    int dx = 1;
    int dy = 0;
    int xLimit = width - 0;
    int yLimit = height - 1;
    int counter = 0;

    int currentLength = 1;
    while (counter < numElements) {
        points[counter] = new Point(x, y);

        x += dx;
        y += dy;

        currentLength++;
        if (dx > 0) {
            if (currentLength >= xLimit) {
                dx = 0;
                dy = 1;
                xLimit--;
                currentLength = 0;
            }
        } else if (dy > 0) {
            if (currentLength >= yLimit) {
                dx = -1;
                dy = 0;
                yLimit--;
                currentLength = 0;
            }
        } else if (dx < 0) {
            if (currentLength >= xLimit) {
                dx = 0;
                dy = -1;
                xLimit--;
                currentLength = 0;
            }
        } else if (dy < 0) {
            if (currentLength >= yLimit) {
                dx = 1;
                dy = 0;
                yLimit--;
                currentLength = 0;
            }
        }

        counter++;
    }

    Array.Reverse(points);
    return points;
}

0

Sto condividendo questo codice che ho progettato per uno scopo diverso; si tratta di trovare il numero di colonna "X" e il numero di riga "Y" dell'elemento dell'array @ indice a spirale "indice". Questa funzione accetta la larghezza "w" e l'altezza "h" della matrice e il "indice" richiesto. Naturalmente, questa funzione può essere utilizzata per produrre lo stesso output richiesto. Penso che sia il metodo più veloce possibile (poiché salta sulle celle invece di scansionarle).

    rec BuildSpiralIndex(long w, long h, long index = -1)
    {  
        long count = 0 , x = -1,  y = -1, dir = 1, phase=0, pos = 0,                            length = 0, totallength = 0;
        bool isVertical = false;
        if(index>=(w*h)) return null;

        do 
        {                
            isVertical = (count % 2) != 0;
            length = (isVertical ? h : w) - count/2 - count%2 ;
            totallength += length;
            count++;
        } while(totallength<index);

        count--; w--; h--;
        phase = (count / 4); pos = (count%4);
        x = (pos > 1 ? phase : w - phase);
        y = ((pos == 1 || pos == 2) ? h - phase : phase) + (1 * (pos == 3 ? 1 : 0));
        dir = pos > 1 ? -1 : 1;
        if (isVertical) y -= (totallength - index - 1) * dir;
        else x -= (totallength - index -1) * dir;
        return new rec { X = x, Y = y };
    }

0

Python looping codice a spirale in senso orario usando la risposta Can Berk Güder .

def spiral(X, Y):
    x = y = 0
    dx = 0
    dy = 1
    for i in range(max(X, Y)**2):
        if (-X/2 < x <= X/2) and (-Y/2 < y <= Y/2):
            print (x, y)
            # DO STUFF...
        if x == -y or (x < 0 and x == y) or (x > 0 and x-1 == y):
            dx, dy = dy, -dx
        x, y = x+dx, y+dy

1
È in senso orario 🔃 e ho citato Can Berk Güder. La domanda originale è per il senso antiorario 🔄. Avevo bisogno di una funzione in senso orario, quindi ho ritenuto utile lasciarla lì.
Adrianmelic,

0

Ottima soluzione di Davidont in VB.Net

    Public Function Spiral(n As Integer) As RowCol
    ' given n an index in the squared spiral
    ' p the sum of point in inner square
    ' a the position on the current square
    ' n = p + a
    ' starts with row 0 col -1
    Dim r As Integer = CInt(Math.Floor((Math.Sqrt(n + 1) - 1) / 2) + 1)

    ' compute radius : inverse arithmetic sum of 8+16+24+...=
    Dim p As Integer = (8 * r * (r - 1)) \ 2
    ' compute total point on radius -1 : arithmetic sum of 8+16+24+...

    Dim en As Integer = r * 2
    ' points by face

    Dim a As Integer = (1 + n - p) Mod (r * 8)
    ' compute the position and shift it so the first is (-r,-r) but (-r+1,-r)
    ' so square can connect

    Dim row As Integer
    Dim col As Integer

    Select Case Math.Floor(a \ (r * 2))
        ' find the face : 0 top, 1 right, 2, bottom, 3 left
        Case 0
            row = a - r
            col = -r
        Case 1
            row = r
            col = (a Mod en) - r
        Case 2
            row = r - (a Mod en)
            col = r
        Case 3
            row = -r
            col = r - (a Mod en)
    End Select

    Return New RowCol(row, col)
End Function
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.