Sfida delle prestazioni C ++: conversione da intero a std :: string


123

Qualcuno può battere le prestazioni del mio intero con il codice std :: string, collegato di seguito?

Ci sono già diverse domande che spiegano come convertire un intero in a std::stringin C ++, come questo , ma nessuna delle soluzioni fornite è efficiente.

Ecco il codice pronto per la compilazione per alcuni metodi comuni con cui competere:

Contrariamente alla credenza popolare , boost::lexical_castha una propria implementazione ( white paper ) e non utilizza stringstreamoperatori di inserimento numerici. Mi piacerebbe molto vedere le sue prestazioni a confronto, perché quest'altra domanda suggerisce che è miserabile .

E il mio contributo, che è competitivo sui computer desktop e dimostra un approccio che funziona a piena velocità anche sui sistemi embedded, a differenza degli algoritmi dipendenti dal modulo intero:

Se vuoi usare quel codice, lo renderò disponibile con una licenza BSD semplificata (uso commerciale consentito, attribuzione richiesta). Chiedi solamente.

Infine, la funzione ltoanon è standard ma ampiamente disponibile.

Pubblicherò le mie misurazioni delle prestazioni come risposta a breve.

Regole per gli algoritmi

  • Fornisci il codice per la conversione di interi con e senza segno di almeno 32 bit in decimali.
  • Produci output come file std::string.
  • Nessun trucco incompatibile con thread e segnali (ad esempio, buffer statici).
  • Puoi assumere un set di caratteri ASCII.
  • Assicurati di testare il tuo codice su INT_MINuna macchina a due complementi in cui il valore assoluto non è rappresentabile.
  • Idealmente, l'output dovrebbe essere carattere per carattere identico alla versione canonica C ++ che utilizza stringstream, http://ideone.com/jh3Sa , ma va bene anche tutto ciò che è chiaramente comprensibile come numero corretto.
  • NOVITÀ : sebbene sia possibile utilizzare qualsiasi opzione del compilatore e dell'ottimizzatore (eccetto completamente disabilitata) desiderata per il confronto, il codice deve anche essere compilato e fornire risultati corretti almeno con VC ++ 2010 e g ++.

Discussione sperata

Oltre ad algoritmi migliori, vorrei anche ottenere alcuni benchmark su diverse piattaforme e compilatori diversi (usiamo il throughput MB / s come unità di misura standard). Credo che il codice per il mio algoritmo (so che il sprintfbenchmark richiede alcune scorciatoie - ora risolto) sia un comportamento ben definito dallo standard, almeno sotto l'ipotesi ASCII, ma se vedi qualche comportamento o input indefiniti per i quali l'output non è valido, si prega di segnalarlo.

conclusioni:

Diversi algoritmi funzionano per g ++ e VC2010, probabilmente a causa delle diverse implementazioni di std::stringciascuno. VC2010 fa chiaramente un lavoro migliore con NRVO, eliminando il ritorno per valore aiutato solo su gcc.

È stato riscontrato che il codice supera le prestazioni sprintfdi un ordine di grandezza. ostringstreamresta indietro di un fattore 50 e più.

Il vincitore della sfida è user434507 che produce codice che esegue il 350% della mia velocità su gcc. Ulteriori iscrizioni sono chiuse a causa dei capricci della comunità SO.

Gli attuali (finali?) Campioni di velocità sono:


5
Penso che questa "Domanda" si adatti meglio qui programmers.stackexchange.com
Juarrow

3
Il tuo problema è sottospecificato, poiché non spiega come dovrebbe apparire la stringa del risultato. Molto probabilmente, restituire sempre la stringa vuota non sarebbe considerato accettabile, ma è conforme alle specifiche.
Martin v. Löwis

7
Ho votato per riaprire questa domanda, non c'è motivo per chiuderla.
Puppy

4
Su questa domanda, i link ideone sono per lo più morti. Includerebbe il codice in un punto più affidabile?
nhahtdh

6
@ BenVoigt chiederei lo stesso. I collegamenti sono tutti morti. Mi piacerebbe dare un'occhiata a questi più da vicino
MAnd

Risposte:


33
#include <string>

const char digit_pairs[201] = {
  "00010203040506070809"
  "10111213141516171819"
  "20212223242526272829"
  "30313233343536373839"
  "40414243444546474849"
  "50515253545556575859"
  "60616263646566676869"
  "70717273747576777879"
  "80818283848586878889"
  "90919293949596979899"
};


std::string& itostr(int n, std::string& s)
{
    if(n==0)
    {
        s="0";
        return s;
    }

    int sign = -(n<0);
    unsigned int val = (n^sign)-sign;

    int size;
    if(val>=10000)
    {
        if(val>=10000000)
        {
            if(val>=1000000000)
                size=10;
            else if(val>=100000000)
                size=9;
            else 
                size=8;
        }
        else
        {
            if(val>=1000000)
                size=7;
            else if(val>=100000)
                size=6;
            else
                size=5;
        }
    }
    else 
    {
        if(val>=100)
        {
            if(val>=1000)
                size=4;
            else
                size=3;
        }
        else
        {
            if(val>=10)
                size=2;
            else
                size=1;
        }
    }
    size -= sign;
    s.resize(size);
    char* c = &s[0];
    if(sign)
        *c='-';

    c += size-1;
    while(val>=100)
    {
       int pos = val % 100;
       val /= 100;
       *(short*)(c-1)=*(short*)(digit_pairs+2*pos); 
       c-=2;
    }
    while(val>0)
    {
        *c--='0' + (val % 10);
        val /= 10;
    }
    return s;
}

std::string& itostr(unsigned val, std::string& s)
{
    if(val==0)
    {
        s="0";
        return s;
    }

    int size;
    if(val>=10000)
    {
        if(val>=10000000)
        {
            if(val>=1000000000)
                size=10;
            else if(val>=100000000)
                size=9;
            else 
                size=8;
        }
        else
        {
            if(val>=1000000)
                size=7;
            else if(val>=100000)
                size=6;
            else
                size=5;
        }
    }
    else 
    {
        if(val>=100)
        {
            if(val>=1000)
                size=4;
            else
                size=3;
        }
        else
        {
            if(val>=10)
                size=2;
            else
                size=1;
        }
    }

    s.resize(size);
    char* c = &s[size-1];
    while(val>=100)
    {
       int pos = val % 100;
       val /= 100;
       *(short*)(c-1)=*(short*)(digit_pairs+2*pos); 
       c-=2;
    }
    while(val>0)
    {
        *c--='0' + (val % 10);
        val /= 10;
    }
    return s;
}

Questo esploderà sui sistemi che non consentono gli accessi alla memoria non allineati (nel qual caso, la prima assegnazione non allineata tramite *(short*)causerebbe un segfault), ma dovrebbe funzionare molto bene altrimenti.

Una cosa importante da fare è ridurre al minimo l'uso di std::string. (Ironico, lo so.) In Visual Studio, ad esempio, la maggior parte delle chiamate ai metodi di std :: string non sono inline, anche se si specifica / Ob2 nelle opzioni del compilatore. Quindi anche qualcosa di banale come una chiamata a std::string::clear(), che ci si potrebbe aspettare molto veloce, può richiedere 100 clocktick quando si collega CRT come libreria statica e fino a 300 clocktick quando ci si collega come DLL.

Per lo stesso motivo, la restituzione per riferimento è migliore perché evita un'assegnazione, un costruttore e un distruttore.


Grazie per il tuo tentativo. Su ideone ( ideone.com/BCp5r ), ottiene 18,5 MB / s, circa la metà della velocità di sprintf. E con VC ++ 2010, ottiene circa 50 MB / s, circa il doppio della velocità di sprintf.
Ben Voigt

MB / s è una metrica strana, soprattutto visto come non rimuovi gli spazi vuoti finali dalla stringa nelle tue implementazioni. Il mio codice aggiornato funziona più velocemente della tua implementazione con x64 VC ++ 2005 su Core i7 920 (16,2 milioni di operazioni / s contro 14,8 milioni di operazioni / s), _ltoa fa 8,5 milioni di operazioni / se sprintf () 3,85 milioni di operazioni / s.
Eugene Smith

Il tuo codice non ridimensiona correttamente la stringa, il mio sì (vedi le righe 81, 198 e 290). Ho preso alcune scorciatoie sprintfnell'implementazione, l'ho già menzionato nella mia domanda, ma credo che il code-to-beat dia esattamente lo stesso risultato dello stringstream.
Ben Voigt

Ho corretto anche il sprintfwrapper, per evitare confusione.
Ben Voigt

A proposito, la tua versione migliorata ( ideone.com/GLAbS ) ottiene 41,7 MB / s su ideone e circa 120 MB / s su VC ++ 2010 a 32 bit.
Ben Voigt

21

Ah, fantastica sfida a proposito ... mi sono divertito molto con questo.

Ho due algoritmi da inviare (il codice è in fondo se hai voglia di saltarlo). Nei miei confronti richiedo che la funzione restituisca una stringa e che possa gestire int e unsigned int. Confrontare le cose che non costruiscono una stringa con quelle che lo fanno non ha davvero senso.

La prima è un'implementazione divertente che non utilizza tabelle di ricerca precalcolate o divisione / modulo esplicita. Questo è competitivo con gli altri con gcc e con tutti tranne Timo su msvc (per una buona ragione che spiego di seguito). Il secondo algoritmo è la mia proposta effettiva per le massime prestazioni. Nei miei test batte tutti gli altri sia su gcc che su msvc.

Penso di sapere perché alcuni dei risultati su MSVC sono molto buoni. std :: string ha due costruttori rilevanti std::string(char* str, size_t n)
e
std::string(ForwardIterator b, ForwardIterator e)
gcc fa la stessa cosa per entrambi ... cioè usa il secondo per implementare il primo. Il primo costruttore può essere implementato in modo molto più efficiente di quello e MSVC lo fa. Il vantaggio collaterale di questo è che in alcuni casi (come il mio codice veloce e il codice di Timo) il costruttore di stringhe può essere integrato. In effetti, il semplice passaggio tra questi costruttori in MSVC è quasi una differenza doppia per il mio codice.

I risultati dei miei test sulle prestazioni:

Fonti del codice:

- Voigt
- Timo
- ergosys
- user434507
- user-voigt-timo
- hopman-fun
- hopman-fast

gcc 4.4.5 -O2 su Ubuntu 10.10 64 bit, Core i5

hopman_fun: 124,688 MB / sec --- 8,020 s
hopman_fast: 137,552 MB / sec --- 7,270 s
voigt: 120,192 MB / sec --- 8,320 s
user_voigt_timo: 97,9432 MB / sec --- 10,210 s
timo: 120,482 MB / sec --- 8,300 s
utente: 97,7517 MB / sec --- 10,230 s
ergosys: 101,42 MB / sec --- 9,860 s

MSVC 2010 64 bit / Ox su Windows 7 64 bit, Core i5

hopman_fun: 127 MB / sec --- 7,874 s
hopman_fast: 259 MB / sec --- 3,861 s
voigt: 221,435 MB / sec --- 4,516 s
user_voigt_timo: 195,695 MB / sec --- 5,110 s
timo: 253,165 MB / sec --- 3,950 s
utente: 212,63 MB / sec --- 4,703 s
ergosys: 78,0518 MB / sec --- 12,812 s

Ecco alcuni risultati e un framework di test / temporizzazione su ideone
http://ideone.com/XZRqp
Nota che ideone è un ambiente a 32 bit. Entrambi i miei algoritmi ne soffrono, ma hopman_fast è almeno ancora competitivo.

Nota che per quelli i due o giù di lì che non costruiscono una stringa ho aggiunto il seguente modello di funzione:

template <typename T>
std::string itostr(T t) {
    std::string ret;
    itostr(t, ret);
    return ret;
}

Ora per il mio codice ... prima quello divertente:

    // hopman_fun

template <typename T> 
T reduce2(T v) {
    T k = ((v * 410) >> 12) & 0x000F000F000F000Full;
    return (((v - k * 10) << 8) + k);
}

template <typename T>
T reduce4(T v) {
    T k = ((v * 10486) >> 20) & 0xFF000000FFull;
    return reduce2(((v - k * 100) << 16) + (k));
}

typedef unsigned long long ull;
inline ull reduce8(ull v) {
    ull k = ((v * 3518437209u) >> 45);
    return reduce4(((v - k * 10000) << 32) + (k));
}

template <typename T>
std::string itostr(T o) {
    union {
        char str[16];
        unsigned short u2[8];
        unsigned u4[4];
        unsigned long long u8[2];
    };

    unsigned v = o < 0 ? ~o + 1 : o;

    u8[0] = (ull(v) * 3518437209u) >> 45;
    u8[0] = (u8[0] * 28147497672ull);
    u8[1] = v - u2[3] * 100000000;

    u8[1] = reduce8(u8[1]);
    char* f;
    if (u2[3]) {
        u2[3] = reduce2(u2[3]);
        f = str + 6;
    } else {
        unsigned short* k = u4[2] ? u2 + 4 : u2 + 6;
        f = *k ? (char*)k : (char*)(k + 1);
    }
    if (!*f) f++;

    u4[1] |= 0x30303030;
    u4[2] |= 0x30303030;
    u4[3] |= 0x30303030;
    if (o < 0) *--f = '-';
    return std::string(f, (str + 16) - f);
}

E poi quello veloce:

    // hopman_fast

struct itostr_helper {
    static unsigned out[10000];

    itostr_helper() {
        for (int i = 0; i < 10000; i++) {
            unsigned v = i;
            char * o = (char*)(out + i);
            o[3] = v % 10 + '0';
            o[2] = (v % 100) / 10 + '0';
            o[1] = (v % 1000) / 100 + '0';
            o[0] = (v % 10000) / 1000;
            if (o[0]) o[0] |= 0x30;
            else if (o[1] != '0') o[0] |= 0x20;
            else if (o[2] != '0') o[0] |= 0x10;
            else o[0] |= 0x00;
        }
    }
};
unsigned itostr_helper::out[10000];

itostr_helper hlp_init;

template <typename T>
std::string itostr(T o) {
    typedef itostr_helper hlp;

    unsigned blocks[3], *b = blocks + 2;
    blocks[0] = o < 0 ? ~o + 1 : o;
    blocks[2] = blocks[0] % 10000; blocks[0] /= 10000;
    blocks[2] = hlp::out[blocks[2]];

    if (blocks[0]) {
        blocks[1] = blocks[0] % 10000; blocks[0] /= 10000;
        blocks[1] = hlp::out[blocks[1]];
        blocks[2] |= 0x30303030;
        b--;
    }

    if (blocks[0]) {
        blocks[0] = hlp::out[blocks[0] % 10000];
        blocks[1] |= 0x30303030;
        b--;
    }

    char* f = ((char*)b);
    f += 3 - (*f >> 4);

    char* str = (char*)blocks;
    if (o < 0) *--f = '-';
    return std::string(f, (str + 12) - f);
}

Per coloro che sono interessati a come funziona hopman-fun ma non hanno voglia di sconcertare, ho creato una versione commentata su ideone.com/rnDxk
Chris Hopman

Non capisco come funziona il primo anche con i commenti. : D Quello veloce è davvero bello, anche se ha il suo prezzo in termini di utilizzo della memoria. Ma immagino che 40kB siano ancora accettabili. In realtà ho modificato il mio codice per utilizzare anche 4 gruppi di caratteri e ho ottenuto una velocità simile. ideone.com/KbTFe
Timo

Sarebbe difficile modificarlo per funzionare con uint64_t? Ho spostato questo codice in C e sostituito 'T' con tipo int e funziona, ma non funziona per uint64_t e non ho la più pallida idea di come personalizzarlo.
pbn

11

Dati di benchmark per il codice fornito nella domanda:

Su ideone (gcc 4.3.4):

Core i7, Windows 7 a 64 bit, 8 GB di RAM, Visual C ++ 2010 a 32 bit:

cl /Ox /EHsc

  • flussi di stringhe: 3,39 MB / s, 3,67 MB / s
  • sprintf: 16,8 MB / s, 16,2 MB / s
  • il mio: 194 MB / s, 207 MB / s (con PGO abilitato: 250 MB / s)

Core i7, Windows 7 64 bit, 8 GB di RAM, Visual C ++ 2010 64 bit:

cl /Ox /EHsc

  • stringstream: 4,42 MB / s, 4,92 MB / s
  • sprintf: 21,0 MB / s, 20,8 MB / s
  • il mio: 238 MB / s, 228 MB / s

Core i7, Windows 7 64 bit, 8 GB di RAM, cygwin gcc 4.3.4:

g++ -O3

  • stringstream: 2,19 MB / s, 2,17 MB / s
  • sprintf: 13,1 MB / s, 13,4 MB / s
  • il mio: 30,0 MB / s, 30,2 MB / s

modifica : stavo per aggiungere la mia risposta, ma la domanda era chiusa, quindi la aggiungo qui. :) Ho scritto il mio algoritmo e sono riuscito a ottenere un miglioramento decente rispetto al codice di Ben, anche se l'ho testato solo in MSVC 2010. Ho anche fatto un benchmark di tutte le implementazioni presentate finora, usando la stessa configurazione di test che era nell'originale di Ben codice. - Timo

Intel Q9450, Win XP 32 bit, MSVC 2010

cl /O2 /EHsc

  • stringstream: 2,87 MB / s
  • sprintf: 16,1 MB / s
  • Ben: 202 MB / s
  • Ben (buffer senza segno): 82,0 MB / s
  • ergosys (versione aggiornata): 64,2 MB / s
  • user434507: 172 MB / s
  • Timo: 241 MB / s

-

const char digit_pairs[201] = {
  "00010203040506070809"
  "10111213141516171819"
  "20212223242526272829"
  "30313233343536373839"
  "40414243444546474849"
  "50515253545556575859"
  "60616263646566676869"
  "70717273747576777879"
  "80818283848586878889"
  "90919293949596979899"
};

static const int BUFFER_SIZE = 11;

std::string itostr(int val)
{
  char buf[BUFFER_SIZE];
  char *it = &buf[BUFFER_SIZE-2];

  if(val>=0) {
    int div = val/100;
    while(div) {
      memcpy(it,&digit_pairs[2*(val-div*100)],2);
      val = div;
      it-=2;
      div = val/100;
    }
    memcpy(it,&digit_pairs[2*val],2);
    if(val<10)
      it++;
  } else {
    int div = val/100;
    while(div) {
      memcpy(it,&digit_pairs[-2*(val-div*100)],2);
      val = div;
      it-=2;
      div = val/100;
    }
    memcpy(it,&digit_pairs[-2*val],2);
    if(val<=-10)
      it--;
    *it = '-';
  }

  return std::string(it,&buf[BUFFER_SIZE]-it);
}

std::string itostr(unsigned int val)
{
  char buf[BUFFER_SIZE];
  char *it = (char*)&buf[BUFFER_SIZE-2];

  int div = val/100;
  while(div) {
    memcpy(it,&digit_pairs[2*(val-div*100)],2);
    val = div;
    it-=2;
    div = val/100;
  }
  memcpy(it,&digit_pairs[2*val],2);
  if(val<10)
    it++;

  return std::string((char*)it,(char*)&buf[BUFFER_SIZE]-(char*)it);
}

grazie per queste informazioni, per favore spiegaci la velocità di gcc! è molto basso :(
Behrouz.M

@ Behrouz: infatti. Non sono esattamente sicuro del motivo per cui gcc sia così lento, sia che si tratti della versione di gcc std::stringo di una scarsa ottimizzazione del codice aritmetico. Farò un'altra versione che non converte alla std::stringfine e vedrò se gcc se la cava meglio.
Ben Voigt

@Timo: è molto bello. Non mi aspettavo che la modifica a un buffer non firmato aiutasse con VC ++, che era già abbastanza veloce, quindi era applicabile solo a gcc e ora user434507 ha fornito una versione molto migliore lì.
Ben Voigt

Penso che dovresti aggiungere una versione che non si converte in std :: string. Modificando solo una riga di codice, la funzione viene eseguita nella metà del tempo sulla mia macchina, utilizzando GCC. E rimuovendo lo std :: string le persone sarebbero in grado di utilizzare questa funzione all'interno dei programmi C.
user1593842

11

Anche se le informazioni che otteniamo qui per gli algoritmi sono piuttosto carine, penso che la domanda sia "non funzionante" e spiegherò perché penso questo:

La domanda chiede di prendere le prestazioni della int-> std::stringconversione, e questo può essere di interesse quando si confronta un metodo comunemente disponibile, come diverse implementazioni di flussi di strings o boost :: lexical_cast. Tuttavia, non ha senso quando si richiede un nuovo codice , un algoritmo specializzato, per farlo. Il motivo è che int2string coinvolgerà sempre l'allocazione di heap da std :: string e se stiamo cercando di spremere l'ultimo dal nostro algoritmo di conversione, non credo abbia senso mescolare queste misurazioni con le allocazioni di heap fatte da std: :corda. Se voglio una conversione performante userò sempre un buffer di dimensioni fisse e certamente non allocherò mai nulla sull'heap!

Per riassumere, penso che i tempi dovrebbero essere divisi:

  • Innanzitutto, la conversione più veloce (int -> buffer fisso).
  • Secondo, tempistica della copia (buffer fisso -> std :: string).
  • Terzo, controllare come l'allocazione std :: string possa essere usata direttamente come buffer, per salvare la copia.

Questi aspetti non dovrebbero essere confusi in una volta, IMHO.


3
<quote> int2string coinvolgerà sempre l'allocazione di heap da std :: string </quote> Non con l'ottimizzazione per stringhe piccole, che è presente nella maggior parte delle implementazioni correnti della Standard Library.
Ben Voigt

Alla fine, però, il std::stringrequisito "output come " è stato posto lì solo per rendere le cose giuste e coerenti per tutte le presentazioni. Gli algoritmi più veloci per ottenere std::stringrisultati saranno anche più veloci per riempire un buffer preallocato.
Ben Voigt

3
@ Ben - buoni commenti. Esp. il sm.str.opt. è qualcosa che dovrò ricordare in futuro quando giudicherò le prestazioni std.string.
Martin Ba

6

Non posso testare con VS, ma sembra essere più veloce del tuo codice per g ++, circa il 10%. Probabilmente potrebbe essere regolato, i valori decisionali scelti sono supposizioni. solo int, mi dispiace.

typedef unsigned buf_t; 

static buf_t * reduce(unsigned val, buf_t * stp) {
   unsigned above = val / 10000; 
   if (above != 0) {
      stp = reduce(above, stp); 
      val -= above * 10000; 
   }

   buf_t digit  = val / 1000; 
   *stp++ = digit + '0'; 
   val -= digit * 1000; 

   digit  = val / 100; 
   *stp++ = digit + '0'; 
   val -= digit * 100; 

   digit  = val / 10; 
   *stp++ = digit + '0'; 
   val -= digit * 10; 
   *stp++ = val + '0'; 
   return stp; 
}

std::string itostr(int input) {

   buf_t buf[16]; 


   if(input == INT_MIN) {  
      char buf2[16]; 
      std::sprintf(buf2, "%d", input); 
      return std::string(buf2); 
   }

   // handle negative
   unsigned val = input;
   if(input < 0) 
      val = -input;

   buf[0] = '0'; 
   buf_t* endp = reduce(val, buf+1); 
   *endp = 127; 

   buf_t * stp = buf+1; 
   while (*stp == '0') 
      stp++;
   if (stp == endp)
      stp--; 

   if (input < 0) { 
      stp--; 
      *stp = '-'; 
   }
   return std::string(stp, endp); 
}

Con variante non firmata: ideone.com/pswq9 . Sembra che cambiare il tipo di buffer da chara unsignedproduca un miglioramento della velocità simile nel mio codice, almeno su gcc / ideone ideone.com/uthKK . Proverò su VS domani.
Ben Voigt

6

Risposta di user2985907 aggiornata ... modp_ufast ...

Integer To String Test (Type 1)
[modp_ufast]Numbers: 240000000  Total:   657777786      Time:  1.1633sec        Rate:206308473.0686nums/sec
[sprintf] Numbers: 240000000    Total:   657777786      Time: 24.3629sec        Rate:  9851045.8556nums/sec
[karma]   Numbers: 240000000    Total:   657777786      Time:  5.2389sec        Rate: 45810870.7171nums/sec
[strtk]   Numbers: 240000000    Total:   657777786      Time:  3.3126sec        Rate: 72450283.7492nums/sec
[so   ]   Numbers: 240000000    Total:   657777786      Time:  3.0828sec        Rate: 77852152.8820nums/sec
[timo ]   Numbers: 240000000    Total:   657777786      Time:  4.7349sec        Rate: 50687912.9889nums/sec
[voigt]   Numbers: 240000000    Total:   657777786      Time:  5.1689sec        Rate: 46431985.1142nums/sec
[hopman]  Numbers: 240000000    Total:   657777786      Time:  4.6169sec        Rate: 51982554.6497nums/sec
Press any key to continue . . .

Integer To String Test(Type 2)
[modp_ufast]Numbers: 240000000  Total:   660000000      Time:  0.5072sec        Rate:473162716.4618nums/sec
[sprintf] Numbers: 240000000    Total:   660000000      Time: 22.3483sec        Rate: 10739062.9383nums/sec
[karma]   Numbers: 240000000    Total:   660000000      Time:  4.2471sec        Rate: 56509024.3035nums/sec
[strtk]   Numbers: 240000000    Total:   660000000      Time:  2.1683sec        Rate:110683636.7123nums/sec
[so   ]   Numbers: 240000000    Total:   660000000      Time:  2.7133sec        Rate: 88454602.1423nums/sec
[timo ]   Numbers: 240000000    Total:   660000000      Time:  2.8030sec        Rate: 85623453.3872nums/sec
[voigt]   Numbers: 240000000    Total:   660000000      Time:  3.4019sec        Rate: 70549286.7776nums/sec
[hopman]  Numbers: 240000000    Total:   660000000      Time:  2.7849sec        Rate: 86178023.8743nums/sec
Press any key to continue . . .

Integer To String Test (type 3)
[modp_ufast]Numbers: 240000000  Total:   505625000      Time:  1.6482sec        Rate:145610315.7819nums/sec
[sprintf] Numbers: 240000000    Total:   505625000      Time: 20.7064sec        Rate: 11590618.6109nums/sec
[karma]   Numbers: 240000000    Total:   505625000      Time:  4.3036sec        Rate: 55767734.3570nums/sec
[strtk]   Numbers: 240000000    Total:   505625000      Time:  2.9297sec        Rate: 81919227.9275nums/sec
[so   ]   Numbers: 240000000    Total:   505625000      Time:  3.0278sec        Rate: 79266003.8158nums/sec
[timo ]   Numbers: 240000000    Total:   505625000      Time:  4.0631sec        Rate: 59068204.3266nums/sec
[voigt]   Numbers: 240000000    Total:   505625000      Time:  4.5616sec        Rate: 52613393.0285nums/sec
[hopman]  Numbers: 240000000    Total:   505625000      Time:  4.1248sec        Rate: 58184194.4569nums/sec
Press any key to continue . . .

int ufast_utoa10(unsigned int value, char* str)
{
#define JOIN(N) N "0", N "1", N "2", N "3", N "4", N "5", N "6", N "7", N "8", N "9"
#define JOIN2(N) JOIN(N "0"), JOIN(N "1"), JOIN(N "2"), JOIN(N "3"), JOIN(N "4"), \
                 JOIN(N "5"), JOIN(N "6"), JOIN(N "7"), JOIN(N "8"), JOIN(N "9")
#define JOIN3(N) JOIN2(N "0"), JOIN2(N "1"), JOIN2(N "2"), JOIN2(N "3"), JOIN2(N "4"), \
                 JOIN2(N "5"), JOIN2(N "6"), JOIN2(N "7"), JOIN2(N "8"), JOIN2(N "9")
#define JOIN4    JOIN3("0"), JOIN3("1"), JOIN3("2"), JOIN3("3"), JOIN3("4"), \
                 JOIN3("5"), JOIN3("6"), JOIN3("7"), JOIN3("8"), JOIN3("9")
#define JOIN5(N) JOIN(N), JOIN(N "1"), JOIN(N "2"), JOIN(N "3"), JOIN(N "4"), \
                 JOIN(N "5"), JOIN(N "6"), JOIN(N "7"), JOIN(N "8"), JOIN(N "9")
#define JOIN6    JOIN5(), JOIN5("1"), JOIN5("2"), JOIN5("3"), JOIN5("4"), \
                 JOIN5("5"), JOIN5("6"), JOIN5("7"), JOIN5("8"), JOIN5("9")
#define F(N)     ((N) >= 100 ? 3 : (N) >= 10 ? 2 : 1)
#define F10(N)   F(N),F(N+1),F(N+2),F(N+3),F(N+4),F(N+5),F(N+6),F(N+7),F(N+8),F(N+9)
#define F100(N)  F10(N),F10(N+10),F10(N+20),F10(N+30),F10(N+40),\
                 F10(N+50),F10(N+60),F10(N+70),F10(N+80),F10(N+90)
  static const short offsets[] = { F100(0), F100(100), F100(200), F100(300), F100(400),
                                  F100(500), F100(600), F100(700), F100(800), F100(900)};
  static const char table1[][4] = { JOIN("") }; 
  static const char table2[][4] = { JOIN2("") }; 
  static const char table3[][4] = { JOIN3("") };
  static const char table4[][5] = { JOIN4 }; 
  static const char table5[][4] = { JOIN6 };
#undef JOIN
#undef JOIN2
#undef JOIN3
#undef JOIN4
  char *wstr;
  int remains[2];
  unsigned int v2;
  if (value >= 100000000) {
    v2 = value / 10000;
    remains[0] = value - v2 * 10000;
    value = v2;
    v2 = value / 10000;
    remains[1] = value - v2 * 10000;
    value = v2;
    wstr = str;
    if (value >= 1000) {
      *(__int32 *) wstr = *(__int32 *) table4[value];
      wstr += 4;
    } else {
      *(__int32 *) wstr = *(__int32 *) table5[value];
      wstr += offsets[value];
    }
    *(__int32 *) wstr = *(__int32 *) table4[remains[1]];
    wstr += 4;
    *(__int32 *) wstr = *(__int32 *) table4[remains[0]];
    wstr += 4;
    *wstr = 0;
    return (wstr - str);
  }
  else if (value >= 10000) {
    v2 = value / 10000;
    remains[0] = value - v2 * 10000;
    value = v2;
    wstr = str;
    if (value >= 1000) {
      *(__int32 *) wstr = *(__int32 *) table4[value];
      wstr += 4;
      *(__int32 *) wstr = *(__int32 *) table4[remains[0]];
      wstr += 4;
      *wstr = 0;
      return 8;
    } else {
      *(__int32 *) wstr = *(__int32 *) table5[value];
      wstr += offsets[value];
      *(__int32 *) wstr = *(__int32 *) table4[remains[0]];
      wstr += 4;
      *wstr = 0;
      return (wstr - str);
    }
  }
  else {
    if (value >= 1000) {
      *(__int32 *) str = *(__int32 *) table4[value];
      str += 4;
      *str = 0;
      return 4;
    } else if (value >= 100) {
      *(__int32 *) str = *(__int32 *) table3[value];
      return 3;
    } else if (value >= 10) {
      *(__int16 *) str = *(__int16 *) table2[value];
      str += 2;
      *str = 0;
      return 2;
    } else {
      *(__int16 *) str = *(__int16 *) table1[value];
      return 1;
    }
  }
}

int ufast_itoa10(int value, char* str) {
  if (value < 0) { *(str++) = '-'; 
    return ufast_utoa10(-value, str) + 1; 
  }
  else return ufast_utoa10(value, str);
}


    void ufast_test() {

   print_mode("[modp_ufast]");

   std::string s;
   s.reserve(32);
   std::size_t total_length = 0;
   strtk::util::timer t;
   t.start();

   char buf[128];
   int len;
   for (int i = (-max_i2s / 2); i < (max_i2s / 2); ++i)
   {
      #ifdef enable_test_type01
      s.resize(ufast_itoa10(((i & 1) ? i : -i), const_cast<char*>(s.c_str())));
      total_length += s.size();
      #endif

      #ifdef enable_test_type02
      s.resize(ufast_itoa10(max_i2s + i, const_cast<char*>(s.c_str())));
      total_length += s.size();
      #endif

      #ifdef enable_test_type03
      s.resize(ufast_itoa10(randval[(max_i2s + i) & 1023], const_cast<char*>(s.c_str())));
      total_length += s.size();
      #endif
   }
   t.stop();
   printf("Numbers:%10lu\tTotal:%12lu\tTime:%8.4fsec\tRate:%14.4fnums/sec\n",
          static_cast<unsigned long>(3 * max_i2s),
          static_cast<unsigned long>(total_length),
          t.time(),
          (3.0 * max_i2s) / t.time());
}

4
Non lo metti mai nella stringa. Inoltre non so perché i tuoi risultati per il codice di tutti gli altri siano così bassi, la tua CPU non è lenta.
Ben Voigt

modp_ufast ha un errore, restituisce 10 invece di 1000000, 19 invece di 1090000 e così via, fino a 11000000.
Denis Zaikin

Ufast modificato restituisce valori non validi (interrotto dopo alcuni errori). Mismatch found: Generated: -99 Reference: -9099999 Mismatch found: Generated: -99 Reference: -9099998 Mismatch found: Generated: -99 Reference: -9099997
Waldemar

C'è una versione più portabile con benchmark disponibile qui: github.com/fmtlib/format-benchmark/blob/master/src/u2985907.h
vitaut

2

Ecco il mio piccolo tentativo di questo divertente puzzle.

Invece di usare le tabelle di ricerca, volevo che il compilatore capisse tutto. In questo caso in particolare - se leggi Hackers 'Delight, vedi come funzionano la divisione e il modulo - il che rende molto possibile ottimizzarlo usando le istruzioni SSE / AVX.

Benchmark delle prestazioni

Per quanto riguarda la velocità, il mio benchmark qui mi dice che è 1,5 volte più veloce del lavoro di Timo (sul mio Intel Haswell gira su circa 1 GB / s).

Cose che potresti considerare un imbroglio

Per quanto riguarda il trucco per non creare una stringa std che uso, ovviamente l'ho preso in considerazione anche per il mio benchmark del metodo di Timo.

Uso un intrinseco: BSR. Se vuoi, puoi anche usare le tabelle DeBruijn, che è una delle cose di cui ho scritto abbastanza nel mio post "2log più veloce". Ovviamente, questo ha una penalità sulle prestazioni (* beh ... se stai facendo molte operazioni itoa puoi effettivamente fare un BSR più veloce ma immagino che non sia giusto ...).

Il modo in cui funziona

La prima cosa da fare è capire quanta memoria abbiamo bisogno. Questo è fondamentalmente un 10log, che può essere implementato in molti modi intelligenti. Vedere i " Bit Twiddling Hacks " spesso citati per i dettagli.

La prossima cosa da fare è eseguire l'output numerico. Uso la ricorsione dei modelli per questo, quindi il compilatore lo capirà.

Uso 'modulo' e 'div' uno accanto all'altro. Se leggi Hacker's Delight, noterai che i due sono strettamente correlati, quindi se hai una risposta, probabilmente hai anche l'altra. Ho pensato che il compilatore potesse capire i dettagli ... :-)

Il codice

Ottenere il numero di cifre utilizzando un log10 (modificato):

struct logarithm
{
    static inline int log2(unsigned int value)
    {
        unsigned long index;
        if (!_BitScanReverse(&index, value))
        {
            return 0;
        }

        // add 1 if x is NOT a power of 2 (to do the ceil)
        return index + (value&(value - 1) ? 1 : 0);
    }

    static inline int numberDigits(unsigned int v)
    {
        static unsigned int const PowersOf10[] =
        { 0, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };

        int t = (logarithm::log2(v) + 1) * 1233 >> 12; // (use a lg2 method from above)
        return 1 + t - (v < PowersOf10[t]);
    }
};

Prendi te stesso la stringa:

template <int count>
struct WriteHelper
{
    inline static void WriteChar(char* buf, unsigned int value)
    {
        unsigned int div = value / 10;
        unsigned int rem = value % 10;
        buf[count - 1] = rem + '0';

        WriteHelper<count - 1>::WriteChar(buf, div);
    }
};

template <>
struct WriteHelper<1>
{
    inline static void WriteChar(char* buf, unsigned int value) 
    {
        buf[0] = '0' + value;
    }
};

// Boring code that converts a length into a switch.
// TODO: Test if recursion with an 'if' is faster.
static inline void WriteNumber(char* data, int len, unsigned int val) 
{
    switch (len) {
    case 1:
        WriteHelper<1>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 2:
        WriteHelper<2>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 3:
        WriteHelper<3>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 4:
        WriteHelper<4>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 5:
        WriteHelper<5>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 6:
        WriteHelper<6>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 7:
        WriteHelper<7>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 8:
        WriteHelper<8>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 9:
        WriteHelper<9>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    case 10:
        WriteHelper<10>::WriteChar(data, static_cast<unsigned int>(val));
        break;
    }
}

// The main method you want to call...
static int Write(char* data, int val) 
{
    int len;
    if (val >= 0) 
    {
        len = logarithm::numberDigits(val);
        WriteNumber(data, len, unsigned int(val));
        return len;
    }
    else 
    {
        unsigned int v(-val);
        len = logarithm::numberDigits(v);
        WriteNumber(data+1, len, v);
        data[0] = '-';
        return len + 1;
    }
}

È interessante notare che di recente ho dato una copia di Hacker's Delight a un collega. Qualche sezione particolare? Ovviamente, nota che modulo e div, sebbene entrambi restituiti da un'istruzione di divisione singola, non saranno ottenuti in questo modo, perché la divisione per una costante viene implementata molto più velocemente usando la moltiplicazione hardware che la divisione.
Ben Voigt

@BenVoigt in realtà se esegui "disassemble" su VS2013 ottieni esattamente il codice che ti aspetteresti dopo aver letto H.'s delight. Il capitolo che stai cercando è il capitolo 10.
atlante

Sì, questa è l'implementazione che utilizza l'hardware multiply a cui mi riferivo.
Ben Voigt

@ BenVoigt Sì, certo, era quello che volevo dire. Sia il modulo che la moltiplicazione (per costante) usano lo stesso numero magico, shift (arit e normale). La mia ipotesi qui era che il compilatore è in grado di capire che sta emettendo le stesse istruzioni più volte e ottimizzarle - e poiché tutte le operazioni possono essere vettorializzate, potrebbe anche capirlo (chiamiamolo un bonus :-). Il punto con la gioia di H è che se sai come vengono compilate queste operazioni (moltiplicazione di interi, shift), puoi fare queste ipotesi.
atlante

2

L'ho tenuto in giro per un po 'e finalmente sono riuscito a pubblicarlo.

Qualche metodo in più rispetto alla doppia parola alla volta hopman_fast . I risultati si riferiscono allo std :: string ottimizzato per le stringhe brevi di GCC, altrimenti le differenze di prestazioni vengono oscurate dall'overhead del codice di gestione delle stringhe copy-on-write. La velocità effettiva viene misurata nello stesso modo in cui altrove in questo argomento, i conteggi dei cicli sono per le parti di serializzazione non elaborate del codice prima di copiare il buffer di output in una stringa.

HOPMAN_FAST - performance reference  
TM_CPP, TM_VEC - scalar and vector versions of Terje Mathisen algorithm  
WM_VEC - intrinsics implementation of Wojciech Mula's vector algorithm  
AK_BW - word-at-a-time routine with a jump table that fills a buffer in reverse  
AK_FW - forward-stepping word-at-a-time routine with a jump table in assembly  
AK_UNROLLED - generic word-at-a-time routine that uses an unrolled loop  

Portata

Costo grezzo

Interruttori del tempo di compilazione:

-DVSTRING - abilita le stringhe SSO per le configurazioni GCC meno
recenti -DBSR1 - abilita fast log10
-DRDTSC - abilita contatori di cicli

#include <cstdio>
#include <iostream>
#include <climits>
#include <sstream>
#include <algorithm>
#include <cstring>
#include <limits>
#include <ctime>
#include <stdint.h>
#include <x86intrin.h>

/* Uncomment to run */
// #define HOPMAN_FAST
// #define TM_CPP
// #define TM_VEC
// #define WM_VEC
// #define AK_UNROLLED
// #define AK_BW
// #define AK_FW

using namespace std;
#ifdef VSTRING
#include <ext/vstring.h>
typedef __gnu_cxx::__vstring string_type;
#else
typedef string string_type;
#endif

namespace detail {

#ifdef __GNUC__
#define ALIGN(N) __attribute__ ((aligned(N)))
#define PACK __attribute__ ((packed))
  inline size_t num_digits(unsigned u) {
    struct {
      uint32_t count;
      uint32_t max;
    } static digits[32] ALIGN(64) = {
    { 1, 9 }, { 1, 9 }, { 1, 9 }, { 1, 9 },
    { 2, 99 }, { 2, 99 }, { 2, 99 },
    { 3, 999 }, { 3, 999 }, { 3, 999 },
    { 4, 9999 }, { 4, 9999 }, { 4, 9999 }, { 4, 9999 },
    { 5, 99999 }, { 5, 99999 }, { 5, 99999 },
    { 6, 999999 }, { 6, 999999 }, { 6, 999999 },
    { 7, 9999999 }, { 7, 9999999 }, { 7, 9999999 }, { 7, 9999999 },
    { 8, 99999999 }, { 8, 99999999 }, { 8, 99999999 },
    { 9, 999999999 }, { 9, 999999999 }, { 9, 999999999 },
    { 10, UINT_MAX }, { 10, UINT_MAX }
    };
#if (defined(i386) || defined(__x86_64__)) && (defined(BSR1) || defined(BSR2))
    size_t l = u;
#if defined(BSR1)
    __asm__ __volatile__ (
      "bsrl %k0, %k0    \n\t"
      "shlq $32, %q1    \n\t" 
      "movq %c2(,%0,8), %0\n\t" 
      "cmpq %0, %q1     \n\t"
      "seta %b1         \n\t"
      "addl %1, %k0     \n\t"
      : "+r" (l), "+r"(u)
      : "i"(digits)
      : "cc"
    );
    return l;
#else
    __asm__ __volatile__ ( "bsr %0, %0;"  : "+r" (l) );
    return digits[l].count + ( u > digits[l].max );
#endif
#else
    size_t l = (u != 0) ? 31 - __builtin_clz(u) : 0;
    return digits[l].count + ( u > digits[l].max );
#endif 
  }
#else 
  inline unsigned msb_u32(unsigned x) {
    static const unsigned bval[] = { 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4 };
    unsigned base = 0;
    if (x & (unsigned) 0xFFFF0000) { base += 32/2; x >>= 32/2; }
    if (x & (unsigned) 0x0000FF00) { base += 32/4; x >>= 32/4; }
    if (x & (unsigned) 0x000000F0) { base += 32/8; x >>= 32/8; }
    return base + bval[x];
  }

  inline size_t num_digits(unsigned x) {
    static const unsigned powertable[] = {
  0,10,100,1000,10000,100000,1000000,10000000,100000000, 1000000000 };
    size_t lg_ten = msb_u32(x) * 1233 >> 12;
    size_t adjust = (x >= powertable[lg_ten]);
    return lg_ten + adjust;
  }
#endif /* __GNUC__ */

  struct CharBuffer {
    class reverse_iterator : public iterator<random_access_iterator_tag, char> {
        char* m_p;
      public:
        reverse_iterator(char* p) : m_p(p - 1) {}
        reverse_iterator operator++() { return --m_p; }
        reverse_iterator operator++(int) { return m_p--; }
        char operator*() const { return *m_p; }
        bool operator==( reverse_iterator it) const { return m_p == it.m_p; }
        bool operator!=( reverse_iterator it) const { return m_p != it.m_p; }
        difference_type operator-( reverse_iterator it) const { return it.m_p - m_p; }
    };
  };

  union PairTable {
    char c[2];
    unsigned short u;
  } PACK table[100] ALIGN(1024) = {
    {{'0','0'}},{{'0','1'}},{{'0','2'}},{{'0','3'}},{{'0','4'}},{{'0','5'}},{{'0','6'}},{{'0','7'}},{{'0','8'}},{{'0','9'}},
    {{'1','0'}},{{'1','1'}},{{'1','2'}},{{'1','3'}},{{'1','4'}},{{'1','5'}},{{'1','6'}},{{'1','7'}},{{'1','8'}},{{'1','9'}},
    {{'2','0'}},{{'2','1'}},{{'2','2'}},{{'2','3'}},{{'2','4'}},{{'2','5'}},{{'2','6'}},{{'2','7'}},{{'2','8'}},{{'2','9'}},
    {{'3','0'}},{{'3','1'}},{{'3','2'}},{{'3','3'}},{{'3','4'}},{{'3','5'}},{{'3','6'}},{{'3','7'}},{{'3','8'}},{{'3','9'}},
    {{'4','0'}},{{'4','1'}},{{'4','2'}},{{'4','3'}},{{'4','4'}},{{'4','5'}},{{'4','6'}},{{'4','7'}},{{'4','8'}},{{'4','9'}},
    {{'5','0'}},{{'5','1'}},{{'5','2'}},{{'5','3'}},{{'5','4'}},{{'5','5'}},{{'5','6'}},{{'5','7'}},{{'5','8'}},{{'5','9'}},
    {{'6','0'}},{{'6','1'}},{{'6','2'}},{{'6','3'}},{{'6','4'}},{{'6','5'}},{{'6','6'}},{{'6','7'}},{{'6','8'}},{{'6','9'}},
    {{'7','0'}},{{'7','1'}},{{'7','2'}},{{'7','3'}},{{'7','4'}},{{'7','5'}},{{'7','6'}},{{'7','7'}},{{'7','8'}},{{'7','9'}},
    {{'8','0'}},{{'8','1'}},{{'8','2'}},{{'8','3'}},{{'8','4'}},{{'8','5'}},{{'8','6'}},{{'8','7'}},{{'8','8'}},{{'8','9'}},
    {{'9','0'}},{{'9','1'}},{{'9','2'}},{{'9','3'}},{{'9','4'}},{{'9','5'}},{{'9','6'}},{{'9','7'}},{{'9','8'}},{{'9','9'}}
  };
} // namespace detail

struct progress_timer {
    clock_t c;
    progress_timer() : c(clock()) {}
    int elapsed() { return clock() - c; }
    ~progress_timer() {
        clock_t d = clock() - c;
        cout << d / CLOCKS_PER_SEC << "."
            << (((d * 1000) / CLOCKS_PER_SEC) % 1000 / 100)
            << (((d * 1000) / CLOCKS_PER_SEC) % 100 / 10)
            << (((d * 1000) / CLOCKS_PER_SEC) % 10)
            << " s" << endl;
    }
};

#ifdef HOPMAN_FAST
namespace hopman_fast {

    static unsigned long cpu_cycles = 0;

    struct itostr_helper {
        static ALIGN(1024) unsigned out[10000];

        itostr_helper() {
            for (int i = 0; i < 10000; i++) {
                unsigned v = i;
                char * o = (char*)(out + i);
                o[3] = v % 10 + '0';
                o[2] = (v % 100) / 10 + '0';
                o[1] = (v % 1000) / 100 + '0';
                o[0] = (v % 10000) / 1000;
                if (o[0]) o[0] |= 0x30;
                else if (o[1] != '0') o[0] |= 0x20;
                else if (o[2] != '0') o[0] |= 0x10;
                else o[0] |= 0x00;
            }
        }
    };
    unsigned itostr_helper::out[10000];

    itostr_helper hlp_init;

    template <typename T>
    string_type itostr(T o) {
        typedef itostr_helper hlp;
#ifdef RDTSC
        long first_clock = __rdtsc();
#endif
        unsigned blocks[3], *b = blocks + 2;
        blocks[0] = o < 0 ? ~o + 1 : o;
        blocks[2] = blocks[0] % 10000; blocks[0] /= 10000;
        blocks[2] = hlp::out[blocks[2]];

        if (blocks[0]) {
            blocks[1] = blocks[0] % 10000; blocks[0] /= 10000;
            blocks[1] = hlp::out[blocks[1]];
            blocks[2] |= 0x30303030;
            b--;
        }

        if (blocks[0]) {
            blocks[0] = hlp::out[blocks[0] % 10000];
            blocks[1] |= 0x30303030;
            b--;
        }

        char* f = ((char*)b);
        f += 3 - (*f >> 4);

        char* str = (char*)blocks;
        if (o < 0) *--f = '-';

        str += 12;
#ifdef RDTSC
        cpu_cycles += __rdtsc() - first_clock;
#endif
        return string_type(f, str);
    }
      unsigned long cycles() { return cpu_cycles; }
      void reset() { cpu_cycles = 0; }
}
#endif

namespace ak {
#ifdef AK_UNROLLED
  namespace unrolled {
    static unsigned long cpu_cycles = 0;

    template <typename value_type> class Proxy {
      static const size_t MaxValueSize = 16;

      static inline char* generate(int value, char* buffer) {
        union { char* pc; unsigned short* pu; } b = { buffer + MaxValueSize };
        unsigned u, v = value < 0 ? unsigned(~value) + 1 : value;
        *--b.pu = detail::table[v % 100].u; u = v;
        if ((v /= 100)) {
          *--b.pu = detail::table[v % 100].u; u = v;
          if ((v /= 100)) {
            *--b.pu = detail::table[v % 100].u; u = v;
            if ((v /= 100)) {
              *--b.pu = detail::table[v % 100].u; u = v;
              if ((v /= 100)) {
                *--b.pu = detail::table[v % 100].u; u = v;
        } } } }
        *(b.pc -= (u >= 10)) = '-';
        return b.pc + (value >= 0);
      }
      static inline char* generate(unsigned value, char* buffer) {
        union { char* pc; unsigned short* pu; } b = { buffer + MaxValueSize };
        unsigned u, v = value;
        *--b.pu = detail::table[v % 100].u; u = v;
        if ((v /= 100)) {
          *--b.pu = detail::table[v % 100].u; u = v;
          if ((v /= 100)) {
            *--b.pu = detail::table[v % 100].u; u = v;
            if ((v /= 100)) {
              *--b.pu = detail::table[v % 100].u; u = v;
              if ((v /= 100)) {
                *--b.pu = detail::table[v % 100].u; u = v;
        } } } }
        return b.pc + (u < 10);
      }
    public:
      static inline string_type convert(value_type v) {
        char buf[MaxValueSize];
#ifdef RDTSC
        long first_clock = __rdtsc();
#endif
        char* p = generate(v, buf);
        char* e = buf + MaxValueSize;
#ifdef RDTSC
        cpu_cycles += __rdtsc() - first_clock;
#endif
        return string_type(p, e);
      }
    };
    string_type itostr(int i) { return Proxy<int>::convert(i); }
    string_type itostr(unsigned i) { return Proxy<unsigned>::convert(i); }
    unsigned long cycles() { return cpu_cycles; }
    void reset() { cpu_cycles = 0; }
  }
#endif

#if defined(AK_BW)
  namespace bw {
    static unsigned long cpu_cycles = 0;
    typedef uint64_t u_type;

    template <typename value_type> class Proxy {

      static inline void generate(unsigned v, size_t len, char* buffer) {
        u_type u = v;
        switch(len) {
        default: u = (v * 1374389535ULL) >> 37; *(uint16_t*)(buffer + 8) = detail::table[v -= 100 * u].u; 
        case  8: v = (u * 1374389535ULL) >> 37; *(uint16_t*)(buffer + 6) = detail::table[u -= 100 * v].u; 
        case  6: u = (v * 1374389535ULL) >> 37; *(uint16_t*)(buffer + 4) = detail::table[v -= 100 * u].u;
        case  4: v = (u * 167773) >> 24; *(uint16_t*)(buffer + 2) = detail::table[u -= 100 * v].u;
        case  2: *(uint16_t*)buffer = detail::table[v].u;
        case  0: return;
        case  9: u = (v * 1374389535ULL) >> 37; *(uint16_t*)(buffer + 7) = detail::table[v -= 100 * u].u;
        case  7: v = (u * 1374389535ULL) >> 37; *(uint16_t*)(buffer + 5) = detail::table[u -= 100 * v].u;
        case  5: u = (v * 1374389535ULL) >> 37; *(uint16_t*)(buffer + 3) = detail::table[v -= 100 * u].u;
        case  3: v = (u * 167773) >> 24; *(uint16_t*)(buffer + 1) = detail::table[u -= 100 * v].u;
        case  1: *buffer = v + 0x30;
        }
      }
    public:
      static inline string_type convert(bool neg, unsigned val) {
        char buf[16];
#ifdef RDTSC
        long first_clock = __rdtsc();
#endif
        size_t len = detail::num_digits(val);
        buf[0] = '-';

        char* e = buf + neg;
        generate(val, len, e);
        e += len;
#ifdef RDTSC
        cpu_cycles += __rdtsc() - first_clock;
#endif
        return string_type(buf, e);
      }
    };
    string_type itostr(int i) { return Proxy<int>::convert(i < 0, i < 0 ? unsigned(~i) + 1 : i); }
    string_type itostr(unsigned i) { return Proxy<unsigned>::convert(false, i); }
    unsigned long cycles() { return cpu_cycles; }
    void reset() { cpu_cycles = 0; }
  }
#endif

#if defined(AK_FW)
  namespace fw {
        static unsigned long cpu_cycles = 0;
        typedef uint32_t u_type;
        template <typename value_type> class Proxy {

        static inline void generate(unsigned v, size_t len, char* buffer) {
#if defined(__GNUC__) && defined(__x86_64__)
          uint16_t w;
          uint32_t u;
          __asm__ __volatile__ (
        "jmp %*T%=(,%3,8)       \n\t"
        "T%=: .quad L0%=        \n\t"
        "     .quad L1%=        \n\t"
        "     .quad L2%=        \n\t"
        "     .quad L3%=        \n\t"
        "     .quad L4%=        \n\t"
        "     .quad L5%=        \n\t"
        "     .quad L6%=        \n\t"
        "     .quad L7%=        \n\t"
        "     .quad L8%=        \n\t"
        "     .quad L9%=        \n\t"
        "     .quad L10%=       \n\t"
        "L10%=:         \n\t"
        " imulq $1441151881, %q0, %q1\n\t"
        " shrq $57, %q1     \n\t"
        " movw %c5(,%q1,2), %w2 \n\t"
        " imull $100000000, %1, %1  \n\t"
        " subl %1, %0       \n\t"
        " movw %w2, (%4)        \n\t"
        "L8%=:          \n\t"
        " imulq $1125899907, %q0, %q1\n\t"
        " shrq $50, %q1     \n\t"
        " movw %c5(,%q1,2), %w2 \n\t"
        " imull $1000000, %1, %1    \n\t"
        " subl %1, %0       \n\t"
        " movw %w2, -8(%4,%3)   \n\t"
        "L6%=:          \n\t"
        " imulq $429497, %q0, %q1   \n\t"
        " shrq $32, %q1     \n\t"
        " movw %c5(,%q1,2), %w2 \n\t"
        " imull $10000, %1, %1  \n\t"
        " subl %1, %0       \n\t"
        " movw %w2, -6(%4,%3)   \n\t"
        "L4%=:          \n\t"
        " imull $167773, %0, %1 \n\t"
        " shrl $24, %1      \n\t"
        " movw %c5(,%q1,2), %w2 \n\t"
        " imull $100, %1, %1    \n\t"
        " subl %1, %0       \n\t"
        " movw %w2, -4(%4,%3)   \n\t"
        "L2%=:          \n\t"
        " movw %c5(,%q0,2), %w2 \n\t"
        " movw %w2, -2(%4,%3)   \n\t"
        "L0%=: jmp 1f       \n\t"
        "L9%=:          \n\t"
        " imulq $1801439851, %q0, %q1\n\t"
        " shrq $54, %q1     \n\t"
        " movw %c5(,%q1,2), %w2 \n\t"
        " imull $10000000, %1, %1   \n\t"
        " subl %1, %0       \n\t"
        " movw %w2, (%4)        \n\t"
        "L7%=:          \n\t"
        " imulq $43980466, %q0, %q1 \n\t"
        " shrq $42, %q1     \n\t"
        " movw %c5(,%q1,2), %w2 \n\t"
        " imull $100000, %1, %1 \n\t"
        " subl %1, %0       \n\t"
        " movw %w2, -7(%4,%3)   \n\t"
        "L5%=:          \n\t"
        " imulq $268436, %q0, %q1   \n\t"
        " shrq $28, %q1     \n\t"
        " movw %c5(,%q1,2), %w2 \n\t"
        " imull $1000, %1, %1   \n\t"
        " subl %1, %0       \n\t"
        " movw %w2, -5(%4,%3)   \n\t"
        "L3%=:          \n\t"
        " imull $6554, %0, %1   \n\t"
        " shrl $15, %1      \n\t"
        " andb $254, %b1        \n\t"
        " movw %c5(,%q1), %w2   \n\t"
        " leal (%1,%1,4), %1    \n\t"
        " subl %1, %0       \n\t"
        " movw %w2, -3(%4,%3)   \n\t"
        "L1%=:          \n\t"
        " addl $48, %0      \n\t"
        " movb %b0, -1(%4,%3)   \n\t"
        "1:             \n\t"
        : "+r"(v), "=&q"(u), "=&r"(w)
        : "r"(len), "r"(buffer), "i"(detail::table)
        : "memory", "cc"
          ); 
#else
          u_type u;
          switch(len) {
        default: u = (v * 1441151881ULL) >> 57; *(uint16_t*)(buffer) = detail::table[u].u; v -= u * 100000000;
        case  8: u = (v * 1125899907ULL) >> 50; *(uint16_t*)(buffer + len - 8) = detail::table[u].u; v -= u * 1000000;
        case  6: u = (v * 429497ULL) >> 32; *(uint16_t*)(buffer + len - 6) = detail::table[u].u; v -= u * 10000;
        case  4: u = (v * 167773) >> 24; *(uint16_t*)(buffer + len - 4) = detail::table[u].u; v -= u * 100;
        case  2: *(uint16_t*)(buffer + len - 2) = detail::table[v].u;
        case  0: return;
        case  9: u = (v * 1801439851ULL) >> 54; *(uint16_t*)(buffer) = detail::table[u].u; v -= u * 10000000; 
        case  7: u = (v * 43980466ULL) >> 42; *(uint16_t*)(buffer + len - 7) = detail::table[u].u; v -= u * 100000; 
        case  5: u = (v * 268436ULL) >> 28;  *(uint16_t*)(buffer + len - 5) = detail::table[u].u; v -= u * 1000;
        case  3: u = (v * 6554) >> 16; *(uint16_t*)(buffer + len - 3) = detail::table[u].u; v -= u * 10;
        case  1: *(buffer + len - 1) = v + 0x30;
          }
#endif
        }
      public:
        static inline string_type convert(bool neg, unsigned val) {
        char buf[16];
#ifdef RDTSC
        long first_clock = __rdtsc();
#endif
        size_t len = detail::num_digits(val);
        if (neg) buf[0] = '-';
        char* e = buf + len + neg;
        generate(val, len, buf + neg);
#ifdef RDTSC
        cpu_cycles += __rdtsc() - first_clock;
#endif
        return string_type(buf, e);
        }
      };
      string_type itostr(int i) { return Proxy<int>::convert(i < 0, i < 0 ? unsigned(~i) + 1 : i); }
      string_type itostr(unsigned i) { return Proxy<unsigned>::convert(false, i); }
      unsigned long cycles() { return cpu_cycles; }
      void reset() { cpu_cycles = 0; }
  }
#endif
} // ak

namespace wm {
#ifdef WM_VEC
#if defined(__GNUC__) && defined(__x86_64__)
  namespace vec {
      static unsigned long cpu_cycles = 0;

      template <typename value_type> class Proxy {

      static inline unsigned generate(unsigned v, char* buf) {
        static struct {
          unsigned short mul_10[8];
          unsigned short div_const[8];
          unsigned short shl_const[8];
          unsigned char  to_ascii[16];
        } ALIGN(64) bits = 
        {
          { // mul_10
           10, 10, 10, 10, 10, 10, 10, 10
          },
          { // div_const
            8389, 5243, 13108, 0x8000, 8389, 5243, 13108, 0x8000
          },
          { // shl_const
            1 << (16 - (23 + 2 - 16)),
            1 << (16 - (19 + 2 - 16)),
            1 << (16 - 1 - 2),
            1 << (15),
            1 << (16 - (23 + 2 - 16)),
            1 << (16 - (19 + 2 - 16)),
            1 << (16 - 1 - 2),
            1 << (15)
          },
          { // to_ascii 
            '0', '0', '0', '0', '0', '0', '0', '0',
            '0', '0', '0', '0', '0', '0', '0', '0'
          }
        };
        unsigned x, y, l;
        x = (v * 1374389535ULL) >> 37;
        y = v;
        l = 0;
        if (x) {
          unsigned div = 0xd1b71759;
          unsigned mul = 55536;
          __m128i z, m, a, o;
          y -= 100 * x;
          z = _mm_cvtsi32_si128(x);
          m = _mm_load_si128((__m128i*)bits.mul_10);
          o = _mm_mul_epu32( z, _mm_cvtsi32_si128(div));
          z = _mm_add_epi32( z, _mm_mul_epu32( _mm_cvtsi32_si128(mul), _mm_srli_epi64( o, 45) ) );
          z = _mm_slli_epi64( _mm_shuffle_epi32( _mm_unpacklo_epi16(z, z), 5 ), 2 );
          a = _mm_load_si128((__m128i*)bits.to_ascii);
          z = _mm_mulhi_epu16( _mm_mulhi_epu16( z, *(__m128i*)bits.div_const ), *(__m128i*)bits.shl_const );
          z = _mm_sub_epi16( z, _mm_slli_epi64( _mm_mullo_epi16( m, z ), 16 ) );
          z = _mm_add_epi8( _mm_packus_epi16( z, _mm_xor_si128(o, o) ), a );
          x = __builtin_ctz( ~_mm_movemask_epi8( _mm_cmpeq_epi8( a, z ) ) );
          l = 8 - x;
          uint64_t q = _mm_cvtsi128_si64(z) >> (x * 8);
          *(uint64_t*)buf = q;
          buf += l;
          x = 1;
        }
        v = (y * 6554) >> 16;
        l += 1 + (x | (v != 0));
            *(unsigned short*)buf = 0x30 + ((l > 1) ? ((0x30 + y - v * 10) << 8) + v : y);
            return l;
        }
      public:
        static inline string_type convert(bool neg, unsigned val) {
        char buf[16];
#ifdef RDTSC
        long first_clock = __rdtsc();
#endif
        buf[0] = '-';
        unsigned len = generate(val, buf + neg);
        char* e = buf + len + neg;
#ifdef RDTSC
        cpu_cycles += __rdtsc() - first_clock;
#endif
        return string_type(buf, e);
        }
      };
      inline string_type itostr(int i) { return Proxy<int>::convert(i < 0, i < 0 ? unsigned(~i) + 1 : i); }
      inline string_type itostr(unsigned i) { return Proxy<unsigned>::convert(false, i); }
      unsigned long cycles() { return cpu_cycles; }
      void reset() { cpu_cycles = 0; }
  }
#endif
#endif
} // wm

namespace tmn {

#ifdef TM_CPP
  namespace cpp {
      static unsigned long cpu_cycles = 0;

      template <typename value_type> class Proxy {

        static inline void generate(unsigned v, char* buffer) {
          unsigned const f1_10000 = (1 << 28) / 10000;
          unsigned tmplo, tmphi;

          unsigned lo = v % 100000;
          unsigned hi = v / 100000;

          tmplo = lo * (f1_10000 + 1) - (lo >> 2);
          tmphi = hi * (f1_10000 + 1) - (hi >> 2);

          unsigned mask = 0x0fffffff;
          unsigned shift = 28;

          for(size_t i = 0; i < 5; i++)
          {
            buffer[i + 0] = '0' + (char)(tmphi >> shift);
            buffer[i + 5] = '0' + (char)(tmplo >> shift);
            tmphi = (tmphi & mask) * 5;
            tmplo = (tmplo & mask) * 5;
            mask >>= 1;
            shift--;
          }
        }
      public:
        static inline string_type convert(bool neg, unsigned val) {
#ifdef RDTSC
        long first_clock = __rdtsc();
#endif
        char buf[16];
        size_t len = detail::num_digits(val);
        char* e = buf + 11;
        generate(val, buf + 1);
        buf[10 - len] = '-';
        len += neg;
        char* b = e - len;
#ifdef RDTSC
        cpu_cycles += __rdtsc() - first_clock;
#endif
        return string_type(b, e);
        }
      };
      string_type itostr(int i) { return Proxy<int>::convert(i < 0, i < 0 ? unsigned(~i) + 1 : i); }
      string_type itostr(unsigned i) { return Proxy<unsigned>::convert(false, i); }
      unsigned long cycles() { return cpu_cycles; }
      void reset() { cpu_cycles = 0; }
  }
#endif

#ifdef TM_VEC
  namespace vec {
      static unsigned long cpu_cycles = 0;

      template <typename value_type> class Proxy {

        static inline unsigned generate(unsigned val, char* buffer) {
        static struct {
            unsigned char mul_10[16];
            unsigned char to_ascii[16];
            unsigned char gather[16];
            unsigned char shift[16];
        } ALIGN(64) bits = {
            { 10,0,0,0,10,0,0,0,10,0,0,0,10,0,0,0 },
            { '0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0' },
            { 3,5,6,7,9,10,11,13,14,15,0,0,0,0,0,0 },
            { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 }
        };

        unsigned u = val / 1000000;
        unsigned l = val - u * 1000000;

        __m128i x, h, f, m, n;

        n = _mm_load_si128((__m128i*)bits.mul_10);
        x = _mm_set_epi64x( l, u );
        h = _mm_mul_epu32( x, _mm_set1_epi32(4294968) );
        x = _mm_sub_epi64( x, _mm_srli_epi64( _mm_mullo_epi32( h, _mm_set1_epi32(1000) ), 32 ) );
        f = _mm_set1_epi32((1 << 28) / 1000 + 1);
        m = _mm_srli_epi32( _mm_cmpeq_epi32(m, m), 4 );
        x = _mm_shuffle_epi32( _mm_blend_epi16( x, h, 204 ), 177 );
        f = _mm_sub_epi32( _mm_mullo_epi32(f, x), _mm_srli_epi32(x, 2) );

        h = _mm_load_si128((__m128i*)bits.to_ascii);

        x = _mm_srli_epi32(f, 28);
        f = _mm_mullo_epi32( _mm_and_si128( f, m ), n );

        x = _mm_or_si128( x, _mm_slli_epi32(_mm_srli_epi32(f, 28), 8) );
        f = _mm_mullo_epi32( _mm_and_si128( f, m ), n );

        x = _mm_or_si128( x, _mm_slli_epi32(_mm_srli_epi32(f, 28), 16) );
        f = _mm_mullo_epi32( _mm_and_si128( f, m ), n );

        x = _mm_or_si128( x, _mm_slli_epi32(_mm_srli_epi32(f, 28), 24) );

        x = _mm_add_epi8( _mm_shuffle_epi8(x, *(__m128i*)bits.gather), h );
        l = __builtin_ctz( ~_mm_movemask_epi8( _mm_cmpeq_epi8( h, x ) ) | (1 << 9) );

        x = _mm_shuffle_epi8( x, _mm_add_epi8(*(__m128i*)bits.shift, _mm_set1_epi8(l) ) );

        _mm_store_si128( (__m128i*)buffer, x );
        return 10 - l;
        }

      public:
        static inline string_type convert(bool neg, unsigned val) {
#ifdef RDTSC
        long first_clock = __rdtsc();
#endif
        char arena[32];
        char* buf = (char*)((uintptr_t)(arena + 16) & ~(uintptr_t)0xf);
        *(buf - 1)= '-';
        unsigned len = generate(val, buf) + neg;
        buf -= neg;
        char* end = buf + len;
#ifdef RDTSC
        cpu_cycles += __rdtsc() - first_clock;
#endif
        return string_type(buf, end);
        }
      };
      string_type itostr(int i) { return Proxy<int>::convert(i < 0, i < 0 ? unsigned(~i) + 1 : i); }
      string_type itostr(unsigned i) { return Proxy<unsigned>::convert(false, i); }
      unsigned long cycles() { return cpu_cycles; }
      void reset() { cpu_cycles = 0; }
  }
#endif
}

bool fail(string in, string_type out) {
    cout << "failure: " << in << " => " << out << endl;
    return false;
}

#define TEST(x, n) \
    stringstream ss; \
    string_type s = n::itostr(x); \
    ss << (long long)x; \
    if (::strcmp(ss.str().c_str(), s.c_str())) { \
        passed = fail(ss.str(), s); \
        break; \
    }

#define test(x) { \
    passed = true; \
    if (0 && passed) { \
        char c = CHAR_MIN; \
        do { \
            TEST(c, x); \
        } while (c++ != CHAR_MAX); \
        if (!passed) cout << #x << " failed char!!!" << endl; \
    } \
    if (0 && passed) { \
        short c = numeric_limits<short>::min(); \
        do { \
            TEST(c, x); \
        } while (c++ != numeric_limits<short>::max()); \
        if (!passed) cout << #x << " failed short!!!" << endl; \
    } \
    if (passed) { \
        int c = numeric_limits<int>::min(); \
        do { \
            TEST(c, x); \
        } while ((c += 100000) < numeric_limits<int>::max() - 100000); \
        if (!passed) cout << #x << " failed int!!!" << endl; \
    } \
    if (passed) { \
        unsigned c = numeric_limits<unsigned>::max(); \
        do { \
            TEST(c, x); \
        } while ((c -= 100000) > 100000); \
        if (!passed) cout << #x << " failed unsigned int!!!" << endl; \
    } \
}

#define time(x, N) \
if (passed) { \
    static const int64_t limits[] = \
        {0, 10, 100, 1000, 10000, 100000, \
         1000000, 10000000, 100000000, 1000000000, 10000000000ULL }; \
    long passes = 0; \
    cout << #x << ": "; \
    progress_timer t; \
    uint64_t s = 0; \
    if (do_time) { \
        for (int n = 0; n < N1; n++) { \
            int i = 0; \
            while (i < N2) { \
                int v = ((NM - i) % limits[N]) | (limits[N] / 10); \
                int w = x::itostr(v).size() + \
                    x::itostr(-v).size(); \
                i += w * mult; \
                                passes++; \
            } \
            s += i / mult; \
        } \
    } \
    k += s; \
    cout << N << " digits: " \
          << s / double(t.elapsed()) * CLOCKS_PER_SEC/1000000 << " MB/sec, " << (x::cycles() / passes >> 1) << " clocks per pass "; \
    x::reset(); \
}

#define series(n) \
    { if (do_test) test(n);    if (do_time) time(n, 1); if (do_time) time(n, 2); \
      if (do_time) time(n, 3); if (do_time) time(n, 4); if (do_time) time(n, 5); \
      if (do_time) time(n, 6); if (do_time) time(n, 7); if (do_time) time(n, 8); \
      if (do_time) time(n, 9); if (do_time) time(n, 10); }

int N1 = 1, N2 = 500000000, NM = INT_MAX;
int mult = 1; //  used to stay under timelimit on ideone
unsigned long long k = 0;

int main(int argc, char** argv) {
    bool do_time = 1, do_test = 1;
    bool passed = true;
#ifdef HOPMAN_FAST
    series(hopman_fast)
#endif
#ifdef WM_VEC
    series(wm::vec)
#endif
#ifdef TM_CPP
    series(tmn::cpp)
#endif
#ifdef TM_VEC
    series(tmn::vec)
#endif
#ifdef AK_UNROLLED
    series(ak::unrolled)
#endif
#if defined(AK_BW)
    series(ak::bw)
#endif
#if defined(AK_FW)
    series(ak::fw)
#endif
    return k;
}

1

Credo di aver creato l'algoritmo da intero a stringa più veloce. È una variazione dell'algoritmo Modulo 100 che è circa il 33% più veloce e, soprattutto, è più veloce sia per i numeri piccoli che per quelli grandi. Si chiama Script ItoS Algorithm. Per leggere il documento che spiega come ho progettato l'algoritmo @vedi https://github.com/kabuki-starship/kabuki-toolkit/wiki/Engineering-a-Faster-Integer-to-String-Algorithm . Puoi usare l'algoritmo ma per favore pensa a come contribuire alla Kabuki VM e controlla Script ; soprattutto se sei interessato a AMIL-NLP e / o ai protocolli di rete definiti dal software.

inserisci qui la descrizione dell'immagine

/** Kabuki Toolkit
    @version 0.x
    @file    ~/source/crabs/print_itos.cc
    @author  Cale McCollough <cale.mccollough@gmail.com>
    @license Copyright (C) 2017-2018 Cale McCollough <calemccollough@gmail.com>;
             All right reserved (R). Licensed under the Apache License, Version 
             2.0 (the "License"); you may not use this file except in 
             compliance with the License. You may obtain a copy of the License 
             [here](http://www.apache.org/licenses/LICENSE-2.0). Unless 
             required by applicable law or agreed to in writing, software 
             distributed under the License is distributed on an "AS IS" BASIS, 
             WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 
             implied. See the License for the specific language governing 
             permissions and limitations under the License.
*/

#include <stdafx.h>
#include "print_itos.h"

#if MAJOR_SEAM >= 1 && MINOR_SEAM >= 1

#if MAJOR_SEAM == 1 && MINOR_SEAM == 1
#define DEBUG 1

#define PRINTF(format, ...) printf(format, __VA_ARGS__);
#define PUTCHAR(c) putchar(c);
#define PRINT_PRINTED\
    sprintf_s (buffer, 24, "%u", value); *text_end = 0;\
    printf ("\n    Printed \"%s\" leaving value:\"%s\":%u",\
            begin, buffer, (uint)strlen (buffer));
#define PRINT_BINARY PrintBinary (value);
#define PRINT_BINARY_TABLE PrintBinaryTable (value);
#else
#define PRINTF(x, ...)
#define PUTCHAR(c)
#define PRINT_PRINTED
#define PRINT_BINARY
#define PRINT_BINARY_TABLE
#endif

namespace _ {

void PrintLine (char c) {
    std::cout << '\n';
    for (int i = 80; i > 0; --i) 
        std::cout << c;
}

char* Print (uint32_t value, char* text, char* text_end) {

    // Lookup table for powers of 10.
    static const uint32_t k10ToThe[]{
        1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000,
        1000000000, ~(uint32_t)0 };

    /** Lookup table of ASCII char pairs for 00, 01, ..., 99.
        To convert this algorithm to big-endian, flip the digit pair bytes. */
    static const uint16_t kDigits00To99[100] = {
        0x3030, 0x3130, 0x3230, 0x3330, 0x3430, 0x3530, 0x3630, 0x3730, 0x3830,
        0x3930, 0x3031, 0x3131, 0x3231, 0x3331, 0x3431, 0x3531, 0x3631, 0x3731,
        0x3831, 0x3931, 0x3032, 0x3132, 0x3232, 0x3332, 0x3432, 0x3532, 0x3632,
        0x3732, 0x3832, 0x3932, 0x3033, 0x3133, 0x3233, 0x3333, 0x3433, 0x3533,
        0x3633, 0x3733, 0x3833, 0x3933, 0x3034, 0x3134, 0x3234, 0x3334, 0x3434,
        0x3534, 0x3634, 0x3734, 0x3834, 0x3934, 0x3035, 0x3135, 0x3235, 0x3335,
        0x3435, 0x3535, 0x3635, 0x3735, 0x3835, 0x3935, 0x3036, 0x3136, 0x3236,
        0x3336, 0x3436, 0x3536, 0x3636, 0x3736, 0x3836, 0x3936, 0x3037, 0x3137,
        0x3237, 0x3337, 0x3437, 0x3537, 0x3637, 0x3737, 0x3837, 0x3937, 0x3038,
        0x3138, 0x3238, 0x3338, 0x3438, 0x3538, 0x3638, 0x3738, 0x3838, 0x3938,
        0x3039, 0x3139, 0x3239, 0x3339, 0x3439, 0x3539, 0x3639, 0x3739, 0x3839,
        0x3939, };

    static const char kMsbShift[] = { 4, 7, 11, 14, 17, 21, 24, 27, 30, };

    if (!text) {
        return nullptr;
    }
    if (text >= text_end) {
        return nullptr;
    }

    uint16_t* text16;
    char      digit;
    uint32_t  scalar;
    uint16_t  digits1and2,
              digits3and4,
              digits5and6,
              digits7and8;
    uint32_t  comparator;

    #if MAJOR_SEAM == 1 && MINOR_SEAM == 1
    // Write a bunches of xxxxxx to the buffer for debug purposes.
    for (int i = 0; i <= 21; ++i) {
        *(text + i) = 'x';
    }
    *(text + 21) = 0;
    char* begin = text;
    char buffer[256];
    #endif

    if (value < 10) {
        PRINTF ("\n    Range:[0, 9] length:1 ")
        if (text + 1 >= text_end) {
            return nullptr;
        }
        *text++ = '0' + (char)value;
        PRINT_PRINTED
        return text;
    }
    if (value < 100) {
        PRINTF ("\n    Range:[10, 99] length:2 ")
        if (text + 2 >= text_end) {
            return nullptr;
        }
        *reinterpret_cast<uint16_t*> (text) = kDigits00To99[value];
        PRINT_PRINTED
        return text + 2;
    }
    if (value >> 14) {
        if (value >> 27) {
            if (value >> 30) {
                PRINTF ("\n    Range:[1073741824, 4294967295] length:10")
                Print10:
                if (text + 10 >= text_end) {
                    return nullptr;
                }
                comparator = 100000000;
                digits1and2 = (uint16_t)(value / comparator);
                PRINTF ("\n    digits1and2:%u", digits1and2)
                value -= digits1and2 * comparator;
                *reinterpret_cast<uint16_t*> (text) = kDigits00To99[digits1and2];
                PRINT_PRINTED
                text += 2;
                goto Print8;
            }
            else {
                comparator = 1000000000;
                if (value >= comparator) {
                    PRINTF ("\n    Range:[100000000, 1073741823] length:10")
                    goto Print10;
                }
                PRINTF ("\n    Range:[134217727, 999999999] length:9")
                if (text + 9 >= text_end) {
                    return nullptr;
                }
                comparator = 100000000;
                digit = (char)(value / comparator);
                *text++ = digit + '0';
                PRINT_PRINTED
                value -= comparator * digit;
                goto Print8;
            }
        }
        else if (value >> 24) {
            comparator = k10ToThe[8];
            if (value >= comparator) {
                PRINTF ("\n    Range:[100000000, 134217728] length:9")
                if (text + 9 >= text_end) {
                    return nullptr;
                }
                *text++ = '1';
                PRINT_PRINTED
                value -= comparator;
            }
            PRINTF ("\n    Range:[16777216, 9999999] length:8")
            if (text + 8 >= text_end) {
                return nullptr;
            }
            Print8:
            PRINTF ("\n    Print8:")
            scalar = 10000;
            digits5and6 = (uint16_t)(value / scalar);
            digits1and2 = value - scalar * digits5and6;
            digits7and8 = digits5and6 / 100;
            digits3and4 = digits1and2 / 100;
            digits5and6 -= 100 * digits7and8;
            digits1and2 -= 100 * digits3and4;
            *reinterpret_cast<uint16_t*> (text + 6) = 
                kDigits00To99[digits1and2];
            PRINT_PRINTED
            *reinterpret_cast<uint16_t*> (text + 4) = 
                kDigits00To99[digits3and4];
            PRINT_PRINTED
            *reinterpret_cast<uint16_t*> (text + 2) = 
                kDigits00To99[digits5and6];
            PRINT_PRINTED
            *reinterpret_cast<uint16_t*> (text) = 
                kDigits00To99[digits7and8];
            PRINT_PRINTED
            return text + 8;
        }
        else if (value >> 20) {
            comparator = 10000000;
            if (value >= comparator) {
                PRINTF ("\n    Range:[10000000, 16777215] length:8")
                if (text + 8 >= text_end) {
                    return nullptr;
                }
                *text++ = '1';
                PRINT_PRINTED
                value -= comparator;
            }
            else {
                PRINTF ("\n    Range:[1048576, 9999999] length:7")
                if (text + 7 >= text_end) {
                    return nullptr;
                }
            }
            scalar = 10000;
            digits5and6 = (uint16_t)(value / scalar);
            digits1and2 = value - scalar * digits5and6;
            digits7and8 = digits5and6 / 100;
            digits3and4 = digits1and2 / 100;
            digits5and6 -= 100 * digits7and8;
            digits1and2 -= 100 * digits3and4;;
            *reinterpret_cast<uint16_t*> (text + 5) = 
                kDigits00To99[digits1and2];
            PRINT_PRINTED
            *reinterpret_cast<uint16_t*> (text + 3) = 
                kDigits00To99[digits3and4];
            PRINT_PRINTED
            *reinterpret_cast<uint16_t*> (text + 1) = 
                kDigits00To99[digits5and6];
            PRINT_PRINTED
            *text = (char)digits7and8 + '0';
            return text + 7;
        }
        else if (value >> 17) {
            comparator = 1000000;
            if (value >= comparator) {
                PRINTF ("\n    Range:[100000, 1048575] length:7")
                if (text + 7 >= text_end) {
                    return nullptr;
                }
                *text++ = '1';
                PRINT_PRINTED
                value -= comparator;
            }
            else {
                PRINTF ("\n    Range:[131072, 999999] length:6")
                if (text + 6 >= text_end) {
                    return nullptr;
                }
            }
            Print6:
            scalar = 10000;
            digits5and6 = (uint16_t)(value / scalar);
            digits1and2 = value - scalar * digits5and6;
            digits7and8 = digits5and6 / 100;
            digits3and4 = digits1and2 / 100;
            digits5and6 -= 100 * digits7and8;
            digits1and2 -= 100 * digits3and4;
            text16 = reinterpret_cast<uint16_t*> (text + 6);
            *reinterpret_cast<uint16_t*> (text + 4) = kDigits00To99[digits1and2];
            PRINT_PRINTED
            *reinterpret_cast<uint16_t*> (text + 2) = kDigits00To99[digits3and4];
            PRINT_PRINTED
            *reinterpret_cast<uint16_t*> (text    ) = kDigits00To99[digits5and6];
            PRINT_PRINTED
            return text + 6;
        }
        else { // (value >> 14)
            if (value >= 100000) {
                PRINTF ("\n    Range:[65536, 131071] length:6")
                goto Print6;
            }
            PRINTF ("\n    Range:[10000, 65535] length:5")
            if (text + 5 >= text_end) {
                return nullptr;
            }
            digits5and6 = 10000;
            digit = (uint8_t)(value / digits5and6);
            value -= digits5and6 * digit;
            *text = digit + '0';
            PRINT_PRINTED
            digits1and2 = (uint16_t)value;
            digits5and6 = 100;
            digits3and4 = digits1and2 / digits5and6;
            digits1and2 -= digits3and4 * digits5and6;
            *reinterpret_cast<uint16_t*> (text + 1) = 
                kDigits00To99[digits3and4];
            PRINT_PRINTED
                PRINTF ("\n    digits1and2:%u", digits1and2)
            *reinterpret_cast<uint16_t*> (text + 3) = 
                kDigits00To99[digits1and2];
            PRINT_PRINTED
            return text + 5;
        }
    }
    digits1and2 = (uint16_t)value;
    if (value >> 10) {
        digits5and6 = 10000;
        if (digits1and2 >= digits5and6) {
            if (text + 5 >= text_end) {
                return nullptr;
            }
            PRINTF ("\n    Range:[10000, 16383] length:5")
            *text++ = '1';
            PRINT_PRINTED
            digits1and2 -= digits5and6;

        }
        else {
            PRINTF ("\n    Range:[1024, 9999] length:4")
            if (text + 4 >= text_end) {
                return nullptr;
            }
        }
        digits5and6 = 100;
        digits3and4 = digits1and2 / digits5and6;
        digits1and2 -= digits3and4 * digits5and6;
        *reinterpret_cast<uint16_t*> (text    ) = kDigits00To99[digits3and4];
        PRINT_PRINTED
        *reinterpret_cast<uint16_t*> (text + 2) = kDigits00To99[digits1and2];
        PRINT_PRINTED
        return text + 4;
    }
    else {
        if (text + 4 >= text_end) {
            return nullptr;
        }
        digits3and4 = 1000;
        if (digits1and2 >= digits3and4) {
            PRINTF ("\n    Range:[1000, 1023] length:4")
            digits1and2 -= digits3and4;
            text16 = reinterpret_cast<uint16_t*> (text + 2);
            *text16-- = kDigits00To99[digits1and2];
            PRINT_PRINTED
            *text16 = (((uint16_t)'1') | (((uint16_t)'0') << 8));
            PRINT_PRINTED
            return text + 4;
        }
        PRINTF ("\n    Range:[100, 999] length:3")
        digits1and2 = (uint16_t)value;
        digits3and4 = 100;
        digit = (char)(digits1and2 / digits3and4);
        digits1and2 -= digit * digits3and4;
        *text = digit + '0';
        PRINT_PRINTED
        *reinterpret_cast<uint16_t*> (text + 1) = kDigits00To99[digits1and2];
        PRINT_PRINTED
        return text + 3;
    }
}

}       //< namespace _
#undef  PRINTF
#undef  PRINT_PRINTED
#endif  //< MAJOR_SEAM >= 1 && MINOR_SEAM >= 1

Autore


3
FYI: Pubblicando questo su Stack Overflow lo hai irrevocabilmente pubblicato sotto CC BY-SA 3.0 (secondo i termini di utilizzo di Stack Exchange). La tua dichiarazione che è pubblicata sotto GPL 3 costituisce una licenza aggiuntiva che un utente può facoltativamente utilizzare come alternativa a CC BY-SA 3.0. La licenza da utilizzare è a discrezione dell'utente che copia il codice. Se questo è un problema per te, ti suggerisco di ottenere una consulenza legale competente. (IANAL) Nota che non c'è niente di intrinsecamente sbagliato in questo, ma ho pensato che dovrebbe essere portato alla tua attenzione.
Makyen

Molto bella. Tuttavia, è necessario restituire std::stringa affinché il confronto con altri metodi qui elencati sia valido. All'inizio non sono riuscito a capire l'uso dell'operatore shift per l'albero di ricerca binario, perché un confronto è già eccezionalmente veloce, ma ora mi rendo conto che sarebbe utile precalcolare quel valore spostato se necessario. Non lo usi, però. D'altra parte, non si finisce con grandi letterali codificati all'interno di istruzioni, quindi forse questo è un motivo sufficiente da solo.
Ben Voigt

Mi sono dimenticato di farlo. È solo un'altra funzione wrapper. Tutta la mia roba è autorizzata da Apache ma ho pensato di provare GNU ma sì ... non ha alcun senso.

Ok, ho cambiato di nuovo la licenza e aggiunto le funzioni di stringa. Script è una famiglia di linguaggi basati su socket per l'elaborazione distribuita per eseguire il mio IGEEK su supercomputer con la stanza cinese. La mia classe di stringhe è un ring buffer. {: -) - + = <Ho anche alcune strutture di dati contigue molto veloci che sono molto più veloci di JSON. Ho un dizionario, una mappa non ordinata, un elenco di tuple, una mappa, uno stack, un array che consente il marshalling dei dati e script codificati in byte, testo compilato JIT e tutti i tipi di bontà della VM. Non è ancora pronto.

Ho appena aggiornato l'algoritmo e migliorato notevolmente le prestazioni di numeri più grandi.

0

Modifica alla soluzione di user434507. Modificato per utilizzare la matrice di caratteri anziché la stringa C ++. Funziona un po 'più veloce. Inoltre ho spostato il controllo per 0 più in basso nel codice ... poiché questo non accade mai nel mio caso particolare. Spostalo indietro se è più comune per il tuo caso.

// Int2Str.cpp : Defines the entry point for the console application.
//
#include <stdio.h>
#include <iostream>
#include "StopWatch.h"

using namespace std;

const char digit_pairs[201] = {
  "00010203040506070809"
  "10111213141516171819"
  "20212223242526272829"
  "30313233343536373839"
  "40414243444546474849"
  "50515253545556575859"
  "60616263646566676869"
  "70717273747576777879"
  "80818283848586878889"
  "90919293949596979899"
};

void itostr(int n, char* c) {
    int sign = -(n<0);
    unsigned int val = (n^sign)-sign;

    int size;
    if(val>=10000) {
        if(val>=10000000) {
            if(val>=1000000000) {
                size=10;
            }
            else if(val>=100000000) {
                size=9;
            }
            else size=8;
        }
        else {
            if(val>=1000000) {
                size=7;
            }
            else if(val>=100000) {
                size=6;
            }
            else size=5;
        }
    }
    else {
        if(val>=100) {
            if(val>=1000) {
                size=4;
            }
            else size=3;
        }
        else {
            if(val>=10) {
                size=2;
            }
            else if(n==0) {
                c[0]='0';
                c[1] = '\0';
                return;
            }
            else size=1;
        }
    }
    size -= sign;
    if(sign)
    *c='-';

    c += size-1;
    while(val>=100) {
        int pos = val % 100;
        val /= 100;
        *(short*)(c-1)=*(short*)(digit_pairs+2*pos); 
        c-=2;
    }
    while(val>0) {
        *c--='0' + (val % 10);
        val /= 10;
    }
    c[size+1] = '\0';
}

void itostr(unsigned val, char* c)
{
    int size;
    if(val>=10000)
    {
        if(val>=10000000)
        {
            if(val>=1000000000)
                size=10;
            else if(val>=100000000)
                size=9;
            else 
                size=8;
        }
        else
        {
            if(val>=1000000)
                size=7;
            else if(val>=100000)
                size=6;
            else
                size=5;
        }
    }
    else 
    {
        if(val>=100)
        {
            if(val>=1000)
                size=4;
            else
                size=3;
        }
        else
        {
            if(val>=10)
                size=2;
            else if (val==0) {
                c[0]='0';
                c[1] = '\0';
                return;
            }
            else
                size=1;
        }
    }

    c += size-1;
    while(val>=100)
    {
       int pos = val % 100;
       val /= 100;
       *(short*)(c-1)=*(short*)(digit_pairs+2*pos); 
       c-=2;
    }
    while(val>0)
    {
        *c--='0' + (val % 10);
        val /= 10;
    }
    c[size+1] = '\0';
}

void test() {
    bool foundmismatch = false;
    char str[16];
    char compare[16];
    for(int i = -1000000; i < 1000000; i++) {
        int random = rand();
        itostr(random, str);
        itoa(random, compare, 10);
        if(strcmp(str, compare) != 0) {
            cout << "Mismatch found: " << endl;
            cout << "Generated: " << str << endl;
            cout << "Reference: " << compare << endl;
            foundmismatch = true;
        }
    }
    if(!foundmismatch) {
        cout << "No mismatch found!" << endl;
    }
    cin.get();
}

void benchmark() {
    StopWatch stopwatch;
    stopwatch.setup("Timer");
    stopwatch.reset();
    stopwatch.start();
    char str[16];
    for(unsigned int i = 0; i < 2000000; i++) {
        itostr(i, str);
    }
    stopwatch.stop();
    cin.get();
}

int main( int argc, const char* argv[]) {
    benchmark();
}

2
L'ho testato da 0x80000000 a 0x7FFFFFFF e già a -999999999 ottieni valori non validi (mi sono fermato dopo alcune discrepanze). Mismatch found: Generated: -9999999990 Reference: -999999999 Mismatch found: Generated: -9999999980 Reference: -999999998 Mismatch found: Generated: -9999999970 Reference: -999999997
Waldemar

0

Usiamo il seguente codice (per MSVC):

TBitScanReverse basato su modelli:

#include <intrin.h>

namespace intrin {

#pragma intrinsic(_BitScanReverse)
#pragma intrinsic(_BitScanReverse64)

template<typename TIntegerValue>
__forceinline auto tBitScanReverse(DWORD * out_index, TIntegerValue mask)
    -> std::enable_if_t<(std::is_integral<TIntegerValue>::value && sizeof(TIntegerValue) == 4), unsigned char>
{
    return _BitScanReverse(out_index, mask);
}
template<typename TIntegerValue>
__forceinline auto tBitScanReverse(DWORD * out_index, TIntegerValue mask)
    -> std::enable_if_t<(std::is_integral<TIntegerValue>::value && sizeof(TIntegerValue) == 8), unsigned char>
{
#if !(_M_IA64 || _M_AMD64)
    auto res = _BitScanReverse(out_index, (unsigned long)(mask >> 32));
    if (res) {
        out_index += 32;
        return res;
    }
    return _BitScanReverse(out_index, (unsigned long)mask);
#else
    return _BitScanReverse64(out_index, mask);
#endif
}

}

char / wchar_t helper:

template<typename TChar> inline constexpr TChar   ascii_0();
template<>               inline constexpr char    ascii_0() { return  '0'; }
template<>               inline constexpr wchar_t ascii_0() { return L'0'; }

template<typename TChar, typename TInt> inline constexpr TChar ascii_DEC(TInt d) { return (TChar)(ascii_0<TChar>() + d); }

Potenze di 10 tavoli:

static uint32 uint32_powers10[] = {
    1,
    10,
    100,
    1000,
    10000,
    100000,
    1000000,
    10000000,
    100000000,
    1000000000
//   123456789
};
static uint64 uint64_powers10[] = {
    1ULL,
    10ULL,
    100ULL,
    1000ULL,
    10000ULL,
    100000ULL,
    1000000ULL,
    10000000ULL,
    100000000ULL,
    1000000000ULL,
    10000000000ULL,
    100000000000ULL,
    1000000000000ULL,
    10000000000000ULL,
    100000000000000ULL,
    1000000000000000ULL,
    10000000000000000ULL,
    100000000000000000ULL,
    1000000000000000000ULL,
    10000000000000000000ULL
//   1234567890123456789
};

template<typename TUint> inline constexpr const TUint  * powers10();
template<>               inline constexpr const uint32 * powers10() { return uint32_powers10; }
template<>               inline constexpr const uint64 * powers10() { return uint64_powers10; }

Stampa effettiva:

template<typename TChar, typename TUInt>
__forceinline auto
print_dec(
    TUInt u,
    TChar * & buffer) -> typename std::enable_if_t<std::is_unsigned<TUInt>::value>
{
    if (u < 10) {                                                   // 1-digit, including 0  
        *buffer++ = ascii_DEC<TChar>(u);
    }
    else {
        DWORD log2u;
        intrin::tBitScanReverse(&log2u, u);                         //  log2u [3,31]  (u >= 10)
        DWORD log10u = ((log2u + 1) * 77) >> 8;                     //  log10u [1,9]   77/256 = ln(2) / ln(10)
        DWORD digits = log10u + (u >= powers10<TUInt>()[log10u]);   //  digits [2,10]

        buffer += digits;
        auto p = buffer;

        for (--digits; digits; --digits) {
            auto x = u / 10, d = u - x * 10;
            *--p = ascii_DEC<TChar>(d);
            u = x;
        }
        *--p = ascii_DEC<TChar>(u);
    }
}

L'ultimo ciclo può essere svolto:

switch (digits) {
case 10: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; }
case  9: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; }
case  8: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; }
case  7: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; }
case  6: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; }
case  5: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; }
case  4: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; }
case  3: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; }
case  2: { auto x = u / 10, d = u - x * 10; *--p = ascii_DEC<TChar>(d); u = x; *--p = ascii_DEC<TChar>(u); break; }
default: __assume(0);
}

L'idea principale è la stessa di @atlaste suggerito prima: https://stackoverflow.com/a/29039967/2204001


0

Mi sono imbattuto in questo a causa della recente attività; Non ho tempo per aggiungere benchmark, ma volevo aggiungere quello che ho scritto in passato per quando ho bisogno di una conversione veloce da intero a stringa ...

https://github.com/CarloWood/ai-utils/blob/master/itoa.h
https://github.com/CarloWood/ai-utils/blob/master/itoa.cxx

Il trucco usato qui è che l'utente deve fornire uno std :: array che sia abbastanza grande (sul proprio stack) e che questo codice scriva la stringa al contrario, iniziando dalle unità e quindi restituendo un puntatore nell'array con un offset dove inizia effettivamente il risultato.

Questo quindi non alloca o sposta la memoria, ma richiede comunque una divisione e un modulo per cifra del risultato (che credo sia abbastanza veloce in quanto si tratta semplicemente di codice eseguito internamente sulla CPU; l'accesso alla memoria è solitamente il problema imho).


-1

Perché nessuno usa la funzione div da stdlib quando sono necessari sia quoziente che resto?
Usando il codice sorgente di Timo, ho finito con qualcosa del genere:

if(val >= 0)
{
    div_t   d2 = div(val,100);
    while(d2.quot)
    {
        COPYPAIR(it,2 * d2.rem);
        it-=2;
        d2 = div(d2.quot,100);
    }
    COPYPAIR(it,2*d2.rem);
    if(d2.quot<10)
        it++;
}
else
{
    div_t   d2 = div(val,100);
    while(d2.quot)
    {
        COPYPAIR(it,-2 * d2.rem);
        it-=2;
        d2 = div(d2.quot,100);
    }
    COPYPAIR(it,-2*d2.rem);
    if(d2.quot<=-10)
        it--;
    *it = '-';
}

Ok, per gli int senza segno, la funzione div non può essere utilizzata ma quelli senza segno possono essere gestiti separatamente.
Ho definito la macro COPYPAIR come segue per testare le variazioni su come copiare i 2 caratteri da digit_pairs (non ho trovato alcun vantaggio evidente di nessuno di questi metodi):

#define COPYPAIR0(_p,_i) { memcpy((_p), &digit_pairs[(_i)], 2); }
#define COPYPAIR1(_p,_i) { (_p)[0] = digit_pairs[(_i)]; (_p)[1] = digit_pairs[(_i)+1]; }
#define COPYPAIR2(_p,_i) { unsigned short * d = (unsigned short *)(_p); unsigned short * s = (unsigned short *)&digit_pairs[(_i)]; *d = *s; }

#define COPYPAIR COPYPAIR2

1
È perché questa sfida riguarda la velocità, non le poche righe di codice.
Ben Voigt

1
PS: E per le persone che vogliono usare questo nella mia soluzione: (1) è molto molto più lento e (2) perché le opere div su firmati interi - che rompe abs (INT32_MIN).
atlante
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.