Ho deciso di rieseguire il test sulla mia macchina usando il codice Lik32. Ho dovuto cambiarlo a causa del mio Windows o compilatore pensando che l'alta risoluzione è di 1ms, usando
mingw32-g ++. exe -O3 -Wall -std = c ++ 11 -fexceptions -g
vector<int> rand_vec(10000000);
GCC ha effettuato la stessa trasformazione su entrambi i codici originali.
Nota che solo le due prime condizioni sono testate poiché la terza deve essere sempre vera, GCC è una specie di Sherlock qui.
Inversione
.L233:
mov DWORD PTR [rsp+104], 0
mov DWORD PTR [rsp+100], 0
mov DWORD PTR [rsp+96], 0
call std::chrono::_V2::system_clock::now()
mov rbp, rax
mov rax, QWORD PTR [rsp+8]
jmp .L219
.L293:
mov edx, DWORD PTR [rsp+104]
add edx, 1
mov DWORD PTR [rsp+104], edx
.L217:
add rax, 4
cmp r14, rax
je .L292
.L219:
mov edx, DWORD PTR [rax]
cmp edx, 94
jg .L293 // >= 95
cmp edx, 19
jg .L218 // >= 20
mov edx, DWORD PTR [rsp+96]
add rax, 4
add edx, 1 // < 20 Sherlock
mov DWORD PTR [rsp+96], edx
cmp r14, rax
jne .L219
.L292:
call std::chrono::_V2::system_clock::now()
.L218: // further down
mov edx, DWORD PTR [rsp+100]
add edx, 1
mov DWORD PTR [rsp+100], edx
jmp .L217
And sorted
mov DWORD PTR [rsp+104], 0
mov DWORD PTR [rsp+100], 0
mov DWORD PTR [rsp+96], 0
call std::chrono::_V2::system_clock::now()
mov rbp, rax
mov rax, QWORD PTR [rsp+8]
jmp .L226
.L296:
mov edx, DWORD PTR [rsp+100]
add edx, 1
mov DWORD PTR [rsp+100], edx
.L224:
add rax, 4
cmp r14, rax
je .L295
.L226:
mov edx, DWORD PTR [rax]
lea ecx, [rdx-20]
cmp ecx, 74
jbe .L296
cmp edx, 19
jle .L297
mov edx, DWORD PTR [rsp+104]
add rax, 4
add edx, 1
mov DWORD PTR [rsp+104], edx
cmp r14, rax
jne .L226
.L295:
call std::chrono::_V2::system_clock::now()
.L297: // further down
mov edx, DWORD PTR [rsp+96]
add edx, 1
mov DWORD PTR [rsp+96], edx
jmp .L224
Quindi questo non ci dice molto se non che l'ultimo caso non ha bisogno di una previsione del ramo.
Ora ho provato tutte e 6 le combinazioni degli if, i primi 2 sono il contrario originale e ordinati. alto è> = 95, basso è <20, la metà è 20-94 con 10000000 iterazioni ciascuno.
high, low, mid: 43000000ns
mid, low, high: 46000000ns
high, mid, low: 45000000ns
low, mid, high: 44000000ns
mid, high, low: 46000000ns
low, high, mid: 44000000ns
high, low, mid: 44000000ns
mid, low, high: 47000000ns
high, mid, low: 44000000ns
low, mid, high: 45000000ns
mid, high, low: 46000000ns
low, high, mid: 45000000ns
high, low, mid: 43000000ns
mid, low, high: 47000000ns
high, mid, low: 44000000ns
low, mid, high: 45000000ns
mid, high, low: 46000000ns
low, high, mid: 44000000ns
high, low, mid: 42000000ns
mid, low, high: 46000000ns
high, mid, low: 46000000ns
low, mid, high: 45000000ns
mid, high, low: 46000000ns
low, high, mid: 43000000ns
high, low, mid: 43000000ns
mid, low, high: 47000000ns
high, mid, low: 44000000ns
low, mid, high: 44000000ns
mid, high, low: 46000000ns
low, high, mid: 44000000ns
high, low, mid: 43000000ns
mid, low, high: 48000000ns
high, mid, low: 44000000ns
low, mid, high: 44000000ns
mid, high, low: 45000000ns
low, high, mid: 45000000ns
high, low, mid: 43000000ns
mid, low, high: 47000000ns
high, mid, low: 45000000ns
low, mid, high: 45000000ns
mid, high, low: 46000000ns
low, high, mid: 44000000ns
high, low, mid: 43000000ns
mid, low, high: 47000000ns
high, mid, low: 45000000ns
low, mid, high: 45000000ns
mid, high, low: 46000000ns
low, high, mid: 44000000ns
high, low, mid: 43000000ns
mid, low, high: 46000000ns
high, mid, low: 45000000ns
low, mid, high: 45000000ns
mid, high, low: 45000000ns
low, high, mid: 44000000ns
high, low, mid: 42000000ns
mid, low, high: 46000000ns
high, mid, low: 44000000ns
low, mid, high: 45000000ns
mid, high, low: 45000000ns
low, high, mid: 44000000ns
1900020, 7498968, 601012
Process returned 0 (0x0) execution time : 2.899 s
Press any key to continue.
Quindi perché l'ordine è alto, basso, medio quindi più veloce (marginalmente)
Perché il più imprevedibile è l'ultimo e quindi non viene mai eseguito attraverso un predittore di diramazione.
if (i >= 95) ++nHigh; // most predictable with 94% taken
else if (i < 20) ++nLow; // (94-19)/94% taken ~80% taken
else if (i >= 20 && i < 95) ++nMid; // never taken as this is the remainder of the outfalls.
Quindi i rami saranno previsti presi, presi e resto con
Errati del 6% + (0,94 *) 20%.
"Smistato"
if (i >= 20 && i < 95) ++nMid; // 75% not taken
else if (i < 20) ++nLow; // 19/25 76% not taken
else if (i >= 95) ++nHigh; //Least likely branch
I rami saranno previsti con non preso, non preso e Sherlock.
25% + (0,75 *) errori di previsione del 24%
Dare una differenza del 18-23% (differenza misurata di ~ 9%) ma dobbiamo calcolare i cicli invece di prevedere in modo errato%.
Supponiamo che la mia CPU Nehalem preveda una penalità di 17 cicli e che ogni controllo richieda 1 ciclo per emettere (4-5 istruzioni) e che il ciclo richieda anche un ciclo. Le dipendenze dei dati sono i contatori e le variabili del ciclo, ma una volta che i fraintendimenti sono fuori mano, non dovrebbe influenzare i tempi.
Quindi per "reverse" otteniamo i tempi (questa dovrebbe essere la formula usata in Computer Architecture: A Quantitative Approach IIRC).
mispredict*penalty+count+loop
0.06*17+1+1+ (=3.02)
(propability)*(first check+mispredict*penalty+count+loop)
(0.19)*(1+0.20*17+1+1)+ (= 0.19*6.4=1.22)
(propability)*(first check+second check+count+loop)
(0.75)*(1+1+1+1) (=3)
= 7.24 cycles per iteration
e lo stesso per "ordinati"
0.25*17+1+1+ (=6.25)
(1-0.75)*(1+0.24*17+1+1)+ (=.25*7.08=1.77)
(1-0.75-0.19)*(1+1+1+1) (= 0.06*4=0.24)
= 8.26
(8,26-7,24) / 8,26 = 13,8% vs. ~ 9% misurato (vicino al misurato!?!).
Quindi l'ovvio dell'OP non è ovvio.
Con questi test, altri test con codice più complicato o più dipendenze di dati saranno sicuramente diversi, quindi misura il tuo caso.
La modifica dell'ordine del test ha modificato i risultati, ma ciò potrebbe essere dovuto a diversi allineamenti dell'inizio del loop, che idealmente dovrebbero essere allineati a 16 byte su tutte le nuove CPU Intel, ma non è in questo caso.