Abbiamo una discussione simile su tuple e struct e scrivo alcuni semplici benchmark con l'aiuto di un mio collega per identificare le differenze in termini di prestazioni tra tuple e struct. Iniziamo prima con una struttura predefinita e una tupla.
struct StructData {
int X;
int Y;
double Cost;
std::string Label;
bool operator==(const StructData &rhs) {
return std::tie(X,Y,Cost, Label) == std::tie(rhs.X, rhs.Y, rhs.Cost, rhs.Label);
}
bool operator<(const StructData &rhs) {
return X < rhs.X || (X == rhs.X && (Y < rhs.Y || (Y == rhs.Y && (Cost < rhs.Cost || (Cost == rhs.Cost && Label < rhs.Label)))));
}
};
using TupleData = std::tuple<int, int, double, std::string>;
Quindi usiamo Celero per confrontare le prestazioni della nostra semplice struttura e tupla. Di seguito è riportato il codice di benchmark ei risultati delle prestazioni raccolti utilizzando gcc-4.9.2 e clang-4.0.0:
std::vector<StructData> test_struct_data(const size_t N) {
std::vector<StructData> data(N);
std::transform(data.begin(), data.end(), data.begin(), [N](auto item) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dis(0, N);
item.X = dis(gen);
item.Y = dis(gen);
item.Cost = item.X * item.Y;
item.Label = std::to_string(item.Cost);
return item;
});
return data;
}
std::vector<TupleData> test_tuple_data(const std::vector<StructData> &input) {
std::vector<TupleData> data(input.size());
std::transform(input.cbegin(), input.cend(), data.begin(),
[](auto item) { return std::tie(item.X, item.Y, item.Cost, item.Label); });
return data;
}
constexpr int NumberOfSamples = 10;
constexpr int NumberOfIterations = 5;
constexpr size_t N = 1000000;
auto const sdata = test_struct_data(N);
auto const tdata = test_tuple_data(sdata);
CELERO_MAIN
BASELINE(Sort, struct, NumberOfSamples, NumberOfIterations) {
std::vector<StructData> data(sdata.begin(), sdata.end());
std::sort(data.begin(), data.end());
}
BENCHMARK(Sort, tuple, NumberOfSamples, NumberOfIterations) {
std::vector<TupleData> data(tdata.begin(), tdata.end());
std::sort(data.begin(), data.end());
}
Risultati delle prestazioni raccolti con clang-4.0.0
Celero
Timer resolution: 0.001000 us
-----------------------------------------------------------------------------------------------------------------------------------------------
Group | Experiment | Prob. Space | Samples | Iterations | Baseline | us/Iteration | Iterations/sec |
-----------------------------------------------------------------------------------------------------------------------------------------------
Sort | struct | Null | 10 | 5 | 1.00000 | 196663.40000 | 5.08 |
Sort | tuple | Null | 10 | 5 | 0.92471 | 181857.20000 | 5.50 |
Complete.
E i risultati delle prestazioni raccolti utilizzando gcc-4.9.2
Celero
Timer resolution: 0.001000 us
-----------------------------------------------------------------------------------------------------------------------------------------------
Group | Experiment | Prob. Space | Samples | Iterations | Baseline | us/Iteration | Iterations/sec |
-----------------------------------------------------------------------------------------------------------------------------------------------
Sort | struct | Null | 10 | 5 | 1.00000 | 219096.00000 | 4.56 |
Sort | tuple | Null | 10 | 5 | 0.91463 | 200391.80000 | 4.99 |
Complete.
Dai risultati di cui sopra possiamo vederlo chiaramente
Tuple è più veloce di una struttura predefinita
Il prodotto binario di clang ha prestazioni superiori a quelle di gcc. clang-vs-gcc non è lo scopo di questa discussione, quindi non mi immergerò nei dettagli.
Sappiamo tutti che scrivere un operatore == o <o> per ogni singola definizione di struttura sarà un'attività dolorosa e buggata. Sostituiamo il nostro comparatore personalizzato usando std :: tie e rieseguiamo il nostro benchmark.
bool operator<(const StructData &rhs) {
return std::tie(X,Y,Cost, Label) < std::tie(rhs.X, rhs.Y, rhs.Cost, rhs.Label);
}
Celero
Timer resolution: 0.001000 us
-----------------------------------------------------------------------------------------------------------------------------------------------
Group | Experiment | Prob. Space | Samples | Iterations | Baseline | us/Iteration | Iterations/sec |
-----------------------------------------------------------------------------------------------------------------------------------------------
Sort | struct | Null | 10 | 5 | 1.00000 | 200508.20000 | 4.99 |
Sort | tuple | Null | 10 | 5 | 0.90033 | 180523.80000 | 5.54 |
Complete.
Ora possiamo vedere che l'uso di std :: tie rende il nostro codice più elegante ed è più difficile sbagliare, tuttavia, perderemo circa l'1% delle prestazioni. Per ora rimarrò con la soluzione std :: tie poiché ricevo anche un avviso sul confronto dei numeri in virgola mobile con il comparatore personalizzato.
Fino ad ora non abbiamo ancora alcuna soluzione per rendere più veloce il nostro codice struct. Diamo un'occhiata alla funzione di scambio e riscrivila per vedere se possiamo ottenere prestazioni:
struct StructData {
int X;
int Y;
double Cost;
std::string Label;
bool operator==(const StructData &rhs) {
return std::tie(X,Y,Cost, Label) == std::tie(rhs.X, rhs.Y, rhs.Cost, rhs.Label);
}
void swap(StructData & other)
{
std::swap(X, other.X);
std::swap(Y, other.Y);
std::swap(Cost, other.Cost);
std::swap(Label, other.Label);
}
bool operator<(const StructData &rhs) {
return std::tie(X,Y,Cost, Label) < std::tie(rhs.X, rhs.Y, rhs.Cost, rhs.Label);
}
};
Risultati delle prestazioni raccolti utilizzando clang-4.0.0
Celero
Timer resolution: 0.001000 us
-----------------------------------------------------------------------------------------------------------------------------------------------
Group | Experiment | Prob. Space | Samples | Iterations | Baseline | us/Iteration | Iterations/sec |
-----------------------------------------------------------------------------------------------------------------------------------------------
Sort | struct | Null | 10 | 5 | 1.00000 | 176308.80000 | 5.67 |
Sort | tuple | Null | 10 | 5 | 1.02699 | 181067.60000 | 5.52 |
Complete.
E i risultati delle prestazioni raccolti utilizzando gcc-4.9.2
Celero
Timer resolution: 0.001000 us
-----------------------------------------------------------------------------------------------------------------------------------------------
Group | Experiment | Prob. Space | Samples | Iterations | Baseline | us/Iteration | Iterations/sec |
-----------------------------------------------------------------------------------------------------------------------------------------------
Sort | struct | Null | 10 | 5 | 1.00000 | 198844.80000 | 5.03 |
Sort | tuple | Null | 10 | 5 | 1.00601 | 200039.80000 | 5.00 |
Complete.
Ora la nostra struttura è leggermente più veloce di quella di una tupla ora (circa il 3% con clang e meno dell'1% con gcc), tuttavia, abbiamo bisogno di scrivere la nostra funzione di scambio personalizzata per tutte le nostre strutture.
tuple
è definita, quindi dipende dalla tua implementazione. Personalmente, vorrei non contare su di esso.