Per quanto ne so, ciò non è possibile se si desidera avere entrambi i membri. Ma puoi specializzarti e avere solo uno dei membri quando il tipo è uguale e vuoto:
template <typename T, typename S, typename = void>
struct Empty{
[[no_unique_address]] T t;
[[no_unique_address]] S s;
constexpr T& get_t() noexcept { return t; };
constexpr S& get_s() noexcept { return s; };
};
template<typename TS>
struct Empty<TS, TS, typename std::enable_if_t<std::is_empty_v<TS>>>{
[[no_unique_address]] TS ts;
constexpr TS& get_t() noexcept { return ts; };
constexpr TS& get_s() noexcept { return ts; };
};
Ovviamente, il resto del programma che utilizza i membri dovrebbe essere modificato per affrontare il caso in cui vi è un solo membro. Non dovrebbe importare quale membro viene utilizzato in questo caso - dopo tutto, è un oggetto senza stato senza indirizzo univoco. Le funzioni membro mostrate dovrebbero renderlo semplice.
purtroppo sizeof(Empty<Empty<A,A>,A>{})==2
dove A è una struttura completamente vuota.
Potresti introdurre più specializzazioni per supportare la compressione ricorsiva di coppie vuote:
template<class TS>
struct Empty<Empty<TS, TS>, TS, typename std::enable_if_t<std::is_empty_v<TS>>>{
[[no_unique_address]] Empty<TS, TS> ts;
constexpr Empty<TS, TS>& get_t() noexcept { return ts; };
constexpr TS& get_s() noexcept { return ts.get_s(); };
};
template<class TS>
struct Empty<TS, Empty<TS, TS>, typename std::enable_if_t<std::is_empty_v<TS>>>{
[[no_unique_address]] Empty<TS, TS> ts;
constexpr TS& get_t() noexcept { return ts.get_t(); };
constexpr Empty<TS, TS>& get_s() noexcept { return ts; };
};
Ancora di più, per comprimere qualcosa del genere Empty<Empty<A, char>, A>
.
template <typename T, typename S>
struct Empty<Empty<T, S>, S, typename std::enable_if_t<std::is_empty_v<S>>>{
[[no_unique_address]] Empty<T, S> ts;
constexpr Empty<T, S>& get_t() noexcept { return ts; };
constexpr S& get_s() noexcept { return ts.get_s(); };
};
template <typename T, typename S>
struct Empty<Empty<S, T>, S, typename std::enable_if_t<std::is_empty_v<S>>>{
[[no_unique_address]] Empty<S, T> st;
constexpr Empty<S, T>& get_t() noexcept { return st; };
constexpr S& get_s() noexcept { return st.get_t(); };
};
template <typename T, typename S>
struct Empty<T, Empty<T, S>, typename std::enable_if_t<std::is_empty_v<T>>>{
[[no_unique_address]] Empty<T, S> ts;
constexpr T& get_t() noexcept { return ts.get_t(); };
constexpr Empty<T, S> get_s() noexcept { return ts; };
};
template <typename T, typename S>
struct Empty<T, Empty<S, T>, typename std::enable_if_t<std::is_empty_v<T>>>{
[[no_unique_address]] Empty<S, T> st;
constexpr T& get_t() noexcept { return st.get_s(); };
constexpr Empty<S, T> get_s() noexcept { return st; };
};
T
se stesso? Ciò genererebbe tipi distinti. In questo momento il fatto che entrambiWrapper
ereditinoT
ti sta trattenendo ...