Panda lenti DataFrame MultiIndex reindex


13

Ho un panda DataFrame del modulo:

                       id                start_time  sequence_no    value
0                      71 2018-10-17 20:12:43+00:00       114428        3
1                      71 2018-10-17 20:12:43+00:00       114429        3
2                      71 2018-10-17 20:12:43+00:00       114431       79
3                      71 2019-11-06 00:51:14+00:00       216009      100
4                      71 2019-11-06 00:51:14+00:00       216011      150
5                      71 2019-11-06 00:51:14+00:00       216013      180
6                      92 2019-12-01 00:51:14+00:00       114430       19
7                      92 2019-12-01 00:51:14+00:00       114433       79
8                      92 2019-12-01 00:51:14+00:00       114434      100

Quello che sto cercando di fare è compilare il sequence_no per id / start_timecombo mancante . Ad esempio, il id/ start_timepairing di 71e 2018-10-17 20:12:43+00:00, manca sequenza_no 114430. Per ogni sequenza_no mancante aggiunta, ho anche bisogno di media / interpolare il valuevalore della colonna mancante . Quindi, l'elaborazione finale dei dati di cui sopra finirà per apparire come:

                       id                start_time  sequence_no    value
0                      71 2018-10-17 20:12:43+00:00       114428        3
1                      71 2018-10-17 20:12:43+00:00       114429        3
2                      71 2018-10-17 20:12:43+00:00       114430       41  **
3                      71 2018-10-17 20:12:43+00:00       114431       79
4                      71 2019-11-06 00:51:14+00:00       216009      100  
5                      71 2019-11-06 00:51:14+00:00       216010      125  **
6                      71 2019-11-06 00:51:14+00:00       216011      150
7                      71 2019-11-06 00:51:14+00:00       216012      165  **
8                      71 2019-11-06 00:51:14+00:00       216013      180
9                      92 2019-12-01 00:51:14+00:00       114430       19
10                     92 2019-12-01 00:51:14+00:00       114431       39  **
11                     92 2019-12-01 00:51:14+00:00       114432       59  **
12                     92 2019-12-01 00:51:14+00:00       114433       79
13                     92 2019-12-01 00:51:14+00:00       114434      100

( **aggiunto a destra delle righe appena inserite per una migliore leggibilità)

La mia soluzione originale per fare ciò si basava pesantemente su loop Python su una grande tabella di dati, quindi sembrava il posto ideale per far brillare numpy e panda. Appoggiandosi a risposte SO come i panda: creare righe per colmare lacune numeriche , mi è venuta in mente:

import pandas as pd
import numpy as np

# Generate dummy data
df = pd.DataFrame([
    (71, '2018-10-17 20:12:43+00:00', 114428, 3),
    (71, '2018-10-17 20:12:43+00:00', 114429, 3),
    (71, '2018-10-17 20:12:43+00:00', 114431, 79),
    (71, '2019-11-06 00:51:14+00:00', 216009, 100),
    (71, '2019-11-06 00:51:14+00:00', 216011, 150),
    (71, '2019-11-06 00:51:14+00:00', 216013, 180),
    (92, '2019-12-01 00:51:14+00:00', 114430, 19),
    (92, '2019-12-01 00:51:14+00:00', 114433, 79),
    (92, '2019-12-01 00:51:14+00:00', 114434, 100),   
], columns=['id', 'start_time', 'sequence_no', 'value'])

# create a new DataFrame with the min/max `sequence_no` values for each `id`/`start_time` pairing
by_start = df.groupby(['start_time', 'id'])
ranges = by_start.agg(
    sequence_min=('sequence_no', np.min), sequence_max=('sequence_no', np.max)
)
reset = ranges.reset_index()

mins = reset['sequence_min']
maxes = reset['sequence_max']

# Use those min/max values to generate a sequence with ALL values in that range
expanded = pd.DataFrame(dict(
    start_time=reset['start_time'].repeat(maxes - mins + 1),
    id=reset['id'].repeat(maxes - mins + 1),
    sequence_no=np.concatenate([np.arange(mins, maxes + 1) for mins, maxes in zip(mins, maxes)])
))

# Use the above generated DataFrame as an index to generate the missing rows, then interpolate
expanded_index = pd.MultiIndex.from_frame(expanded)
df.set_index(
    ['start_time', 'id', 'sequence_no']
).reindex(expanded_index).interpolate()

L'output è corretto, ma funziona quasi esattamente alla stessa velocità della mia soluzione con molti loop al pitone. Sono sicuro che ci sono posti in cui potrei tagliare alcuni passaggi, ma la parte più lenta dei miei test sembra essere la reindex. Dato che i dati del mondo reale sono costituiti da quasi un milione di righe (utilizzate frequentemente), ci sono modi ovvi per ottenere un vantaggio in termini di prestazioni rispetto a ciò che ho già scritto? In che modo posso accelerare questa trasformazione?

Aggiornamento del 9/12/2019

Combinando la soluzione di unione di questa risposta con la costruzione originale del frame di dati espanso si ottengono i risultati più veloci finora, se testati su un set di dati sufficientemente grande:

import pandas as pd
import numpy as np

# Generate dummy data
df = pd.DataFrame([
    (71, '2018-10-17 20:12:43+00:00', 114428, 3),
    (71, '2018-10-17 20:12:43+00:00', 114429, 3),
    (71, '2018-10-17 20:12:43+00:00', 114431, 79),
    (71, '2019-11-06 00:51:14+00:00', 216009, 100),
    (71, '2019-11-06 00:51:14+00:00', 216011, 150),
    (71, '2019-11-06 00:51:14+00:00', 216013, 180),
    (92, '2019-12-01 00:51:14+00:00', 114430, 19),
    (92, '2019-12-01 00:51:14+00:00', 114433, 79),
    (92, '2019-12-01 00:51:14+00:00', 114434, 100),   
], columns=['id', 'start_time', 'sequence_no', 'value'])

# create a ranges df with groupby and agg
ranges = df.groupby(['start_time', 'id'])['sequence_no'].agg([
    ('sequence_min', np.min), ('sequence_max', np.max)
])
reset = ranges.reset_index()

mins = reset['sequence_min']
maxes = reset['sequence_max']

# Use those min/max values to generate a sequence with ALL values in that range
expanded = pd.DataFrame(dict(
    start_time=reset['start_time'].repeat(maxes - mins + 1),
    id=reset['id'].repeat(maxes - mins + 1),
    sequence_no=np.concatenate([np.arange(mins, maxes + 1) for mins, maxes in zip(mins, maxes)])
))

# merge expanded and df
merge = expanded.merge(df, on=['start_time', 'id', 'sequence_no'], how='left')
# interpolate and assign values 
merge['value'] = merge['value'].interpolate()

Risposte:


8

usando mergeinvece di reindexpuò accelerare le cose. Inoltre, l'uso della mappa al posto della comprensione dell'elenco può anche.

# Generate dummy data
df = pd.DataFrame([
    (71, '2018-10-17 20:12:43+00:00', 114428, 3),
    (71, '2018-10-17 20:12:43+00:00', 114429, 3),
    (71, '2018-10-17 20:12:43+00:00', 114431, 79),
    (71, '2019-11-06 00:51:14+00:00', 216009, 100),
    (71, '2019-11-06 00:51:14+00:00', 216011, 150),
    (71, '2019-11-06 00:51:14+00:00', 216013, 180),
    (92, '2019-12-01 00:51:14+00:00', 114430, 19),
    (92, '2019-12-01 00:51:14+00:00', 114433, 79),
    (92, '2019-12-01 00:51:14+00:00', 114434, 100),   
], columns=['id', 'start_time', 'sequence_no', 'value'])

# create a ranges df with groupby and agg
ranges = df.groupby(['start_time', 'id'])['sequence_no'].agg([('sequence_min', np.min), ('sequence_max', np.max)])
# map with range to create the sequence number rnage
ranges['sequence_no'] = list(map(lambda x,y: range(x,y), ranges.pop('sequence_min'), ranges.pop('sequence_max')+1))
# explode you DataFrame
new_df = ranges.explode('sequence_no')
# merge new_df and df
merge = new_df.reset_index().merge(df, on=['start_time', 'id', 'sequence_no'], how='left')
# interpolate and assign values 
merge['value'] = merge['value'].interpolate()

                   start_time  id sequence_no  value
0   2018-10-17 20:12:43+00:00  71      114428    3.0
1   2018-10-17 20:12:43+00:00  71      114429    3.0
2   2018-10-17 20:12:43+00:00  71      114430   41.0
3   2018-10-17 20:12:43+00:00  71      114431   79.0
4   2019-11-06 00:51:14+00:00  71      216009  100.0
5   2019-11-06 00:51:14+00:00  71      216010  125.0
6   2019-11-06 00:51:14+00:00  71      216011  150.0
7   2019-11-06 00:51:14+00:00  71      216012  165.0
8   2019-11-06 00:51:14+00:00  71      216013  180.0
9   2019-12-01 00:51:14+00:00  92      114430   19.0
10  2019-12-01 00:51:14+00:00  92      114431   39.0
11  2019-12-01 00:51:14+00:00  92      114432   59.0
12  2019-12-01 00:51:14+00:00  92      114433   79.0
13  2019-12-01 00:51:14+00:00  92      114434  100.0

Questo è stato un caso interessante di "un passo avanti, un passo indietro". Avevi ragione nel mergedire che è significativamente più veloce di reindex, ma risulta che explodeè molto lento su set di dati più grandi. Combinando la tua unione con la costruzione originale del set di dati espanso, otteniamo l'implementazione più veloce finora (vedi l'aggiornamento del 9/12/2019 alla domanda)
MBrizzle,

1
@MBrizzle Inoltre, dovrei notare che l'aggiunta del parametro all'unione copy=Falsedovrebbe accelerare un po 'le cose e si eviterà qualsiasi copia non necessaria dei dati. merge = expanded.merge(df, on=['start_time', 'id', 'sequence_no'], how='left', copy=False)
Yo_Chris,

3

Una versione più breve della mergesoluzione:

df.groupby(['start_time', 'id'])['sequence_no']\
.apply(lambda x: np.arange(x.min(), x.max() + 1))\
.explode().reset_index()\
.merge(df, on=['start_time', 'id', 'sequence_no'], how='left')\
.interpolate()

Produzione:

                   start_time  id sequence_no  value
0   2018-10-17 20:12:43+00:00  71      114428    3.0
1   2018-10-17 20:12:43+00:00  71      114429    3.0
2   2018-10-17 20:12:43+00:00  71      114430   41.0
3   2018-10-17 20:12:43+00:00  71      114431   79.0
4   2019-11-06 00:51:14+00:00  71      216009  100.0
5   2019-11-06 00:51:14+00:00  71      216010  125.0
6   2019-11-06 00:51:14+00:00  71      216011  150.0
7   2019-11-06 00:51:14+00:00  71      216012  165.0
8   2019-11-06 00:51:14+00:00  71      216013  180.0
9   2019-12-01 00:51:14+00:00  92      114430   19.0
10  2019-12-01 00:51:14+00:00  92      114431   39.0
11  2019-12-01 00:51:14+00:00  92      114432   59.0
12  2019-12-01 00:51:14+00:00  92      114433   79.0
13  2019-12-01 00:51:14+00:00  92      114434  100.0

1

Un'altra soluzione con reindexsenza usare explode:

result = (df.groupby(["id","start_time"])
          .apply(lambda d: d.set_index("sequence_no")
          .reindex(range(min(d["sequence_no"]),max(d["sequence_no"])+1)))
          .drop(["id","start_time"],axis=1).reset_index()
          .interpolate())

print (result)

#
    id                 start_time  sequence_no  value
0   71  2018-10-17 20:12:43+00:00       114428    3.0
1   71  2018-10-17 20:12:43+00:00       114429    3.0
2   71  2018-10-17 20:12:43+00:00       114430   41.0
3   71  2018-10-17 20:12:43+00:00       114431   79.0
4   71  2019-11-06 00:51:14+00:00       216009  100.0
5   71  2019-11-06 00:51:14+00:00       216010  125.0
6   71  2019-11-06 00:51:14+00:00       216011  150.0
7   71  2019-11-06 00:51:14+00:00       216012  165.0
8   71  2019-11-06 00:51:14+00:00       216013  180.0
9   92  2019-12-01 00:51:14+00:00       114430   19.0
10  92  2019-12-01 00:51:14+00:00       114431   39.0
11  92  2019-12-01 00:51:14+00:00       114432   59.0
12  92  2019-12-01 00:51:14+00:00       114433   79.0
13  92  2019-12-01 00:51:14+00:00       114434  100.0
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.