Trova vicini immediati per gruppo utilizzando la tabella dei dati o igraph


14

Ho un data.table :

groups <- data.table(group = c("A", "B", "C", "D", "E", "F", "G"), 
                     code_1 = c(2,2,2,7,8,NA,5),
                     code_2 = c(NA,3,NA,3,NA,NA,2),
                     code_3 = c(4,1,1,4,4,1,8))

group code_1 code_2 code_3
  A      2     NA      4
  B      2      3      1
  C      2     NA      1
  D      7      3      4
  E      8     NA      4
  F     NA     NA      1
  G      5      2      8

Quello che vorrei ottenere è che ogni gruppo trovi i vicini immediati in base ai codici disponibili. Ad esempio: il gruppo A ha gruppi vicini immediati B, C a causa di code_1 (code_1 è uguale a 2 in tutti i gruppi) e ha gruppi vicini immediati D, E a causa di code_3 (code_3 è uguale a 4 in tutti quei gruppi).

Quello che ho provato è per ogni codice, sottoponendo la prima colonna (gruppo) in base alle corrispondenze come segue:

groups$code_1_match = list()
for (row in 1:nrow(groups)){

  set(groups, i=row, j="code_1_match", list(groups$group[groups$code_1[row] == groups$code_1]))
}

  group code_1 code_2 code_3          code_1_match
    A      2     NA      4              A,B,C,NA
    B      2      3      1              A,B,C,NA
    C      2     NA      1              A,B,C,NA
    D      7      3      4                  D,NA
    E      8     NA      4                  E,NA
    F     NA     NA      1 NA,NA,NA,NA,NA,NA,...
    G      5      2      8                  NA,G

Questo "kinda" funziona ma suppongo che ci sia un tipo di tabella di dati in più per farlo. Provai

groups[, code_1_match_2 := list(group[code_1 == groups$code_1])]

Ma questo non funziona.

Mi sto perdendo qualche ovvio trucco della tabella dei dati per affrontarlo?

Il risultato del mio caso ideale sarebbe simile a questo (che attualmente richiederebbe l'utilizzo del mio metodo per tutte e 3 le colonne e quindi la concatenazione dei risultati):

group code_1 code_2 code_3    Immediate neighbors
  A      2     NA      4         B,C,D,E
  B      2      3      1         A,C,D,F
  C      2     NA      1         A,B,F
  D      7      3      4           B,A
  E      8     NA      4           A,D
  F     NA     NA      1           B,C
  G      5      2      8           

Potrebbe essere fatto usando igraph.
zx8754,

1
Il mio obiettivo è alimentare il risultato in igraph per creare una matrice di adiacenza. Se manco alcune funzionalità che lo farebbero, per favore, indicamelo, sarebbe davvero utile!
Utente2321

1
@ zx8754, considera la pubblicazione di una soluzione che igraphpotrebbe interessare , potrebbe essere davvero interessante.
tmfmnk,

@tmfmnk ha pubblicato, anche se pensando che potrebbe esserci un modo migliore per farlo.
zx8754,

Risposte:


10

Usando igraph , ottieni vicini di secondo grado, elimina i nodi numerici, incolla i nodi rimanenti.

library(data.table)
library(igraph)

# reshape wide-to-long
x <- melt(groups, id.vars = "group")[!is.na(value)]

# convert to graph
g <- graph_from_data_frame(x[, .(from = group, to = paste0(variable, "_", value))])

# get 2nd degree neighbours
x1 <- ego(g, 2, nodes = groups$group)

# prettify the result
groups$res <- sapply(seq_along(x1), function(i) toString(intersect(names(x1[[ i ]]),
                                                                   groups$group[ -i ])))

#    group code_1 code_2 code_3        res
# 1:     A      2     NA      4 B, C, D, E
# 2:     B      2      3      1 A, C, D, F
# 3:     C      2     NA      1    A, B, F
# 4:     D      7      3      4    B, A, E
# 5:     E      8     NA      4       A, D
# 6:     F     NA     NA      1       B, C
# 7:     G      5      2      8           

Ulteriori informazioni

Ecco come appaiono i nostri dati prima di convertirli in oggetto igraph. Vogliamo garantire che code1 con valore 2 sia diverso da code2 con valore 2, ecc.

x[, .(from = group, to = paste0(variable, "_", value))]
#     from       to
#  1:    A code_1_2
#  2:    B code_1_2
#  3:    C code_1_2
#  4:    D code_1_7
#  5:    E code_1_8
#  6:    G code_1_5
#  7:    B code_2_3
#  8:    D code_2_3
#  9:    G code_2_2
# 10:    A code_3_4
# 11:    B code_3_1
# 12:    C code_3_1
# 13:    D code_3_4
# 14:    E code_3_4
# 15:    F code_3_1
# 16:    G code_3_8

Ecco come appare la nostra rete: inserisci qui la descrizione dell'immagine

Si noti che i A..Gnodi sono sempre connessi tramite code_x_y. Quindi abbiamo bisogno di ottenere il 2 ° grado, ego(..., order = 2)ci dà vicini fino a includere i vicini di 2 ° grado e restituisce un oggetto elenco.

Per ottenere i nomi:

lapply(x1, names)
# [[1]]
# [1] "A"        "code_1_2" "code_3_4" "B"        "C"        "D"        "E"       
# 
# [[2]]
# [1] "B"        "code_1_2" "code_2_3" "code_3_1" "A"        "C"        "D"        "F"       
# 
# [[3]]
# [1] "C"        "code_1_2" "code_3_1" "A"        "B"        "F"       
# 
# [[4]]
# [1] "D"        "code_1_7" "code_2_3" "code_3_4" "B"        "A"        "E"       
# 
# [[5]]
# [1] "E"        "code_1_8" "code_3_4" "A"        "D"       
# 
# [[6]]
# [1] "F"        "code_3_1" "B"        "C"       
# 
# [[7]]
# [1] "G"        "code_1_5" "code_2_2" "code_3_8"

Per preimpostare il risultato, è necessario rimuovere i code_x_ynodi e il nodo di origine (1 ° nodo)

sapply(seq_along(x1), function(i) toString(intersect(names(x1[[ i ]]), groups$group[ -i ])))
#[1] "B, C, D, E" "A, C, D, F" "A, B, F"    "B, A, E"    "A, D"       "B, C"       ""   

Senza essere un esperto di igraph, sembra davvero strano. Sembra funzionare :) Se lo capisco correttamente, crea prima un grafico in cui i codici sono i vicini immediati e poi trova i vicini immediati effettivi come secondi vicini da quel grafico?
Utente2321

@ User2321 ha aggiunto ulteriori informazioni, spero che sia più chiaro.
zx8754,

1
@ User2321 a proposito non è per niente esperto, proprio come a volte risolvere problemi di emicrania. Sto ancora aspettando un esperto per suggerire un modo migliore.
zx8754,

1
Sì, sto pensando di offrire una taglia per ogni evenienza. Ma vediamo tra 2 giorni :)
User2321

7

C'è probabilmente un modo più pratico per raggiungere questo, ma si potrebbe fare qualcosa di simile, utilizzando fonde e unisce:

mgrp <- melt(groups, id.vars = "group")[!is.na(value)]
setkey(mgrp, variable, value)
for (i in seq_along(groups$group)) {
  let = groups$group[i]
  set(
    groups, 
    i = i, 
    j = "inei", 
    value = list(mgrp[mgrp[group == let], setdiff(unique(group), let)])
  )
}

groups
#    group code_1 code_2 code_3    inei
# 1:     A      2     NA      4 B,C,D,E
# 2:     B      2      3      1 A,C,D,F
# 3:     C      2     NA      1   A,B,F
# 4:     D      7      3      4   B,A,E
# 5:     E      8     NA      4     A,D
# 6:     F     NA     NA      1     B,C
# 7:     G      5      2      8       

5

Questo si ispira alla fusione di @ sindri_baldur. Questa soluzione:

  1. Fonde i gruppi
  2. Esegue un self-join cartesiano.
  3. Incolla tutti i gruppi corrispondenti.
  4. Torna al DT originale
library(data.table)
#> Warning: package 'data.table' was built under R version 3.6.2
groups <- data.table(group = c("A", "B", "C", "D", "E", "F", "G"), code_1 = c(2,2,2,7,8,NA,5), code_2 = c(NA,3,NA,3,NA,NA,2), code_3=c(4,1,1,4,4,1,8))

molten_grps = melt(groups, measure.vars = patterns("code"), na.rm = TRUE)

inei_dt = molten_grps[molten_grps,
            on = .(variable, value),
            allow.cartesian = TRUE
            ][,
              .(inei = paste0(setdiff(i.group, .BY[[1L]]), collapse = ", ")),
              by = group]

groups[inei_dt, on = .(group), inei := inei]

groups
#>     group code_1 code_2 code_3       inei
#>    <char>  <num>  <num>  <num>     <char>
#> 1:      A      2     NA      4 B, C, D, E
#> 2:      B      2      3      1 A, C, D, F
#> 3:      C      2     NA      1    A, B, F
#> 4:      D      7      3      4    B, A, E
#> 5:      E      8     NA      4       A, D
#> 6:      F     NA     NA      1       B, C
#> 7:      G      5      2      8

5

Come menzionato da zx8754, usando data.table::meltcon combne poiigraph::as_adjacency_matrix

library(data.table)
df <- melt(groups, id.vars="group", na.rm=TRUE)[,
    if (.N > 1L) transpose(combn(group, 2L, simplify=FALSE)), value][, (1) := NULL]

library(igraph)
as_adjacency_matrix(graph_from_data_frame(df, FALSE))

produzione:

7 x 7 sparse Matrix of class "dgCMatrix"
  A B C E D G F
A . 1 1 1 1 1 .
B 1 . 2 . 1 1 1
C 1 2 . . . 1 1
E 1 . . . 1 1 .
D 1 1 . 1 . . .
G 1 1 1 1 . . .
F . 1 1 . . . .

o senza usare igraph

x <- df[, unique(c(V1, V2))]
df <- rbindlist(list(df, data.table(x, x)))
tab <- table(df)   #or xtabs(~ V1 + V2, data=df)
ans <- t(tab) + tab
diag(ans) <- 0L
ans

produzione:

   V1
V2  A B C D E F G
  A 0 1 1 1 1 0 1
  B 1 0 2 1 0 1 1
  C 1 2 0 0 0 1 1
  D 1 1 0 0 1 0 0
  E 1 0 0 1 0 0 1
  F 0 1 1 0 0 0 0
  G 1 1 1 0 1 0 0

1
Potrebbe xtabscreare un output simile al igraphpassaggio?
Cole

Questa è una risposta davvero utile e (ai miei occhi) elegante, grazie!
Utente2321

@Cole, sì, puoi usare tableoxtabs
chinsoon12
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.