Trova la distanza dallo zero più vicino nell'array NumPy


12

Diciamo che ho un array NumPy:

x = np.array([0, 1, 2, 0, 4, 5, 6, 7, 0, 0])

Ad ogni indice, voglio trovare la distanza dal valore zero più vicino. Se la posizione è zero, restituisce zero come distanza. Successivamente, siamo interessati solo alle distanze dallo zero più vicino che si trova a destra della posizione corrente. L'approccio super ingenuo sarebbe qualcosa del tipo:

out = np.full(x.shape[0], x.shape[0]-1)
for i in range(x.shape[0]):
    j = 0
    while i + j < x.shape[0]:
        if x[i+j] == 0:
            break
        j += 1
    out[i] = j

E l'output sarebbe:

array([0, 2, 1, 0, 4, 3, 2, 1, 0, 0])

Sto notando un pattern di conto alla rovescia / decremento nell'output tra gli zeri. Quindi, potrei essere in grado di utilizzare le posizioni degli zeri (cioè, zero_indices = np.argwhere(x == 0).flatten())

Qual è il modo più veloce per ottenere l'output desiderato in tempo lineare?


E se non ci fosse 0 a destra?
Divakar,

Grande domanda, quindi dovrebbe essere impostato automaticamente sull'indice finale (cioè, x.shape[0] - 1)
slaw

Risposte:


8

Approccio n. 1: Searchsorted in soccorso del tempo lineare in modo vettoriale (prima che arrivino i numba)!

mask_z = x==0
idx_z = np.flatnonzero(mask_z)
idx_nz = np.flatnonzero(~mask_z)

# Cover for the case when there's no 0 left to the right
# (for same results as with posted loop-based solution)
if x[-1]!=0:
    idx_z = np.r_[idx_z,len(x)]

out = np.zeros(len(x), dtype=int)
idx = np.searchsorted(idx_z, idx_nz)
out[~mask_z] = idx_z[idx] - idx_nz

Approccio n. 2: un altro con alcuni cumsum-

mask_z = x==0
idx_z = np.flatnonzero(mask_z)

# Cover for the case when there's no 0 left to the right
if x[-1]!=0:
    idx_z = np.r_[idx_z,len(x)]

out = idx_z[np.r_[False,mask_z[:-1]].cumsum()] - np.arange(len(x))

In alternativa, l'ultimo passaggio di cumsumpotrebbe essere sostituito dalla repeatfunzionalità:

r = np.r_[idx_z[0]+1,np.diff(idx_z)]
out = np.repeat(idx_z,r)[:len(x)] - np.arange(len(x))

Approccio n. 3: un altro per lo più solo cumsum-

mask_z = x==0
idx_z = np.flatnonzero(mask_z)

pp = np.full(len(x), -1)
pp[idx_z[:-1]] = np.diff(idx_z) - 1
if idx_z[0]==0:
    pp[0] = idx_z[1]
else:
    pp[0] = idx_z[0]
out = pp.cumsum()

# Handle boundary case and assigns 0s at original 0s places
out[idx_z[-1]:] = np.arange(len(x)-idx_z[-1],0,-1)
out[mask_z] = 0

4

Potresti lavorare dall'altra parte. Mantenere un contatore sul numero di cifre diverse da zero e assegnarlo all'elemento nell'array. Se viene visualizzato 0, reimpostare il contatore su 0

Modifica: se non c'è zero sulla destra, allora hai bisogno di un altro controllo

x = np.array([0, 1, 2, 0, 4, 5, 6, 7, 0, 0])
out = x 
count = 0 
hasZero = False 
for i in range(x.shape[0]-1,-1,-1):
    if out[i] != 0:
        if not hasZero: 
            out[i] = x.shape[0]-1
        else:
            count += 1
            out[i] = count
    else:
        hasZero = True
        count = 0
print(out)

2

È possibile utilizzare la differenza tra gli indici di ciascuna posizione e il massimo cumulativo di zero posizioni per determinare la distanza dallo zero precedente. Questo può essere fatto avanti e indietro. Il minimo tra la distanza in avanti e indietro allo zero precedente (o successivo) sarà il più vicino:

import numpy as np

indices  = np.arange(x.size)
zeroes   = x==0
forward  = indices - np.maximum.accumulate(indices*zeroes)  # forward distance
forward[np.cumsum(zeroes)==0] = x.size-1                    # handle absence of zero from edge
forward  = forward * (x!=0)                                 # set zero positions to zero                

zeroes   = zeroes[::-1]
backward = indices - np.maximum.accumulate(indices*zeroes) # backward distance
backward[np.cumsum(zeroes)==0] = x.size-1                  # handle absence of zero from edge
backward = backward[::-1] * (x!=0)                         # set zero positions to zero

distZero = np.minimum(forward,backward) # closest distance (minimum)

i risultati:

distZero
# [0, 1, 1, 0, 1, 2, 2, 1, 0, 0]

forward
# [0, 1, 2, 0, 1, 2, 3, 4, 0, 0]

backward
# [0, 2, 1, 0, 4, 3, 2, 1, 0, 0]

Caso speciale in cui non sono presenti zero sui bordi esterni:

x = np.array([3, 1, 2, 0, 4, 5, 6, 0,8,8])

forward:  [9 9 9 0 1 2 3 0 1 2]
backward: [3 2 1 0 3 2 1 0 9 9]
distZero: [3 2 1 0 1 2 1 0 1 2]

funziona anche senza zero

[EDIT]  soluzioni non intorpidite ...

se stai cercando una soluzione O (N) che non richiede intorpidimento, puoi applicare questa strategia usando la funzione accumulate di itertools:

x = [0, 1, 2, 0, 4, 5, 6, 7, 0, 0]

from itertools import accumulate

maxDist  = len(x) - 1
zeroes   = [maxDist*(v!=0) for v in x]
forward  = [*accumulate(zeroes,lambda d,v:min(maxDist,(d+1)*(v!=0)))]
backward = accumulate(zeroes[::-1],lambda d,v:min(maxDist,(d+1)*(v!=0)))
backward = [*backward][::-1]
distZero = [min(f,b) for f,b in zip(forward,backward)]                      

print("x",x)
print("f",forward)
print("b",backward)
print("d",distZero)

produzione:

x [0, 1, 2, 0, 4, 5, 6, 7, 0, 0]
f [0, 1, 2, 0, 1, 2, 3, 4, 0, 0]
b [0, 2, 1, 0, 4, 3, 2, 1, 0, 0]
d [0, 1, 1, 0, 1, 2, 2, 1, 0, 0]

Se non si desidera utilizzare alcuna libreria, è possibile accumulare manualmente le distanze in un ciclo:

x = [0, 1, 2, 0, 4, 5, 6, 7, 0, 0]
forward,backward = [],[]
fDist = bDist = maxDist = len(x)-1
for f,b in zip(x,reversed(x)):
    fDist = min(maxDist,(fDist+1)*(f!=0))
    forward.append(fDist)
    bDist = min(maxDist,(bDist+1)*(b!=0))
    backward.append(bDist)
backward = backward[::-1]
distZero = [min(f,b) for f,b in zip(forward,backward)]

print("x",x)
print("f",forward)
print("b",backward)
print("d",distZero)

produzione:

x [0, 1, 2, 0, 4, 5, 6, 7, 0, 0]
f [0, 1, 2, 0, 1, 2, 3, 4, 0, 0]
b [0, 2, 1, 0, 4, 3, 2, 1, 0, 0]
d [0, 1, 1, 0, 1, 2, 2, 1, 0, 0]

0

La mia prima intuizione sarebbe quella di usare lo slicing. Se x può essere un elenco normale anziché un array intorpidito, è possibile utilizzare

 out = [x[i:].index(0) for i,_ in enumerate(x)]

se è necessario numpy, è possibile utilizzare

 out = [np.where(x[i:]==0)[0][0] for i,_ in enumerate(x)]

ma questo è meno efficiente perché stai trovando tutte le posizioni zero a destra del valore e poi tirando fuori solo il primo. Quasi sicuramente un modo migliore per farlo in modo intorpidito.


0

Modifica: mi dispiace, ho frainteso. Questo ti darà la distanza dagli zeri più vicini, sia a sinistra che a destra. Ma puoi usare d_rightcome risultato intermedio. Questo non copre il caso limite di non avere uno zero a destra però.

import numpy as np

x = np.array([0, 1, 2, 0, 4, 5, 6, 7, 0, 0])

# Get the distance to the closest zero from the left:
zeros = x == 0
zero_locations = np.argwhere(x == 0).flatten()
zero_distances = np.diff(np.insert(zero_locations, 0, 0))

temp = x.copy()
temp[~zeros] = 1
temp[zeros] = -(zero_distances-1)
d_left = np.cumsum(temp) - 1

# Get the distance to the closest zero from the right:
zeros = x[::-1] == 0
zero_locations = np.argwhere(x[::-1] == 0).flatten()
zero_distances = np.diff(np.insert(zero_locations, 0, 0))

temp = x.copy()
temp[~zeros] = 1
temp[zeros] = -(zero_distances-1)
d_right = np.cumsum(temp) - 1
d_right = d_right[::-1]

# Get the smallest distance from both sides:
smallest_distances = np.min(np.stack([d_left, d_right]), axis=0)
# np.array([0, 1, 1, 0, 1, 2, 2, 1, 0, 0])
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.