Ho visto molti progetti usando simplejson
module invece di json
module dalla Standard Library. Inoltre, ci sono molti simplejson
moduli diversi . Perché utilizzare queste alternative, anziché quella nella libreria standard?
Ho visto molti progetti usando simplejson
module invece di json
module dalla Standard Library. Inoltre, ci sono molti simplejson
moduli diversi . Perché utilizzare queste alternative, anziché quella nella libreria standard?
Risposte:
json
viene simplejson
aggiunto allo stdlib. Ma poiché è json
stato aggiunto in 2.6, simplejson
ha il vantaggio di lavorare su più versioni di Python (2.4+).
simplejson
viene inoltre aggiornato più frequentemente di Python, quindi se hai bisogno (o desideri) della versione più recente, è meglio usare simplejson
se stesso, se possibile.
Una buona pratica, secondo me, è usare l'uno o l'altro come fallback.
try:
import simplejson as json
except ImportError:
import json
JSONDecodeError
è una sottoclasse diValueError
Non sono d'accordo con le altre risposte: la json
libreria integrata (in Python 2.7) non è necessariamente più lenta di simplejson
. Inoltre non ha questo fastidioso bug unicode .
Ecco un semplice benchmark:
import json
import simplejson
from timeit import repeat
NUMBER = 100000
REPEAT = 10
def compare_json_and_simplejson(data):
"""Compare json and simplejson - dumps and loads"""
compare_json_and_simplejson.data = data
compare_json_and_simplejson.dump = json.dumps(data)
assert json.dumps(data) == simplejson.dumps(data)
result = min(repeat("json.dumps(compare_json_and_simplejson.data)", "from __main__ import json, compare_json_and_simplejson",
repeat = REPEAT, number = NUMBER))
print " json dumps {} seconds".format(result)
result = min(repeat("simplejson.dumps(compare_json_and_simplejson.data)", "from __main__ import simplejson, compare_json_and_simplejson",
repeat = REPEAT, number = NUMBER))
print "simplejson dumps {} seconds".format(result)
assert json.loads(compare_json_and_simplejson.dump) == data
result = min(repeat("json.loads(compare_json_and_simplejson.dump)", "from __main__ import json, compare_json_and_simplejson",
repeat = REPEAT, number = NUMBER))
print " json loads {} seconds".format(result)
result = min(repeat("simplejson.loads(compare_json_and_simplejson.dump)", "from __main__ import simplejson, compare_json_and_simplejson",
repeat = REPEAT, number = NUMBER))
print "simplejson loads {} seconds".format(result)
print "Complex real world data:"
COMPLEX_DATA = {'status': 1, 'timestamp': 1362323499.23, 'site_code': 'testing123', 'remote_address': '212.179.220.18', 'input_text': u'ny monday for less than \u20aa123', 'locale_value': 'UK', 'eva_version': 'v1.0.3286', 'message': 'Successful Parse', 'muuid1': '11e2-8414-a5e9e0fd-95a6-12313913cc26', 'api_reply': {"api_reply": {"Money": {"Currency": "ILS", "Amount": "123", "Restriction": "Less"}, "ProcessedText": "ny monday for less than \\u20aa123", "Locations": [{"Index": 0, "Derived From": "Default", "Home": "Default", "Departure": {"Date": "2013-03-04"}, "Next": 10}, {"Arrival": {"Date": "2013-03-04", "Calculated": True}, "Index": 10, "All Airports Code": "NYC", "Airports": "EWR,JFK,LGA,PHL", "Name": "New York City, New York, United States (GID=5128581)", "Latitude": 40.71427, "Country": "US", "Type": "City", "Geoid": 5128581, "Longitude": -74.00597}]}}}
compare_json_and_simplejson(COMPLEX_DATA)
print "\nSimple data:"
SIMPLE_DATA = [1, 2, 3, "asasd", {'a':'b'}]
compare_json_and_simplejson(SIMPLE_DATA)
E i risultati sul mio sistema (Python 2.7.4, Linux 64-bit):
Dati complessi del mondo reale:
dump json 1,56666707993 secondi
dump simplejson 2,25638604164 secondi
carichi json 2,71256899834 secondi
carichi simplejson 1,29233884811 secondiDati semplici:
json dump 0,370109081268 secondi
simplejson dump 0,574181079865 secondi
json carica 0,422876119614 secondi
simplejson carica 0,270955085754 secondi
Per il dumping, json
è più veloce di simplejson
. Per il caricamento, simplejson
è più veloce.
Dato che attualmente sto creando un servizio Web, dumps()
è più importante e è sempre preferibile utilizzare una libreria standard.
Inoltre, cjson
non è stato aggiornato negli ultimi 4 anni, quindi non lo toccherei.
json
(CPython 3.5.0) è il 68% | 45% più veloce su dump semplici | complessi e il 35% | 17% su carichi semplici | complessi rispetto a simplejson
v3.8.0 con speedup C usando il tuo codice di riferimento. Pertanto, non utilizzerei più Simplejson con questa configurazione.
json
vince o è lo stesso per tutti i test. In effetti json
è un po 'meno veloce del doppio del complesso test dei dump di dati del mondo reale!
Tutte queste risposte non sono molto utili perché sono sensibili al tempo .
Dopo aver fatto alcune mie ricerche ho scoperto che simplejson
è davvero più veloce di quello incorporato, se lo tieni aggiornato all'ultima versione.
pip/easy_install
volevo installare 2.3.2 su Ubuntu 12.04, ma dopo aver scoperto che l'ultima simplejson
versione è in realtà la 3.3.0, quindi l'ho aggiornata e ho riprovato i test del tempo.
simplejson
è circa 3 volte più veloce di quello incorporato json
ai carichisimplejson
è circa il 30% più veloce di quello incorporato json
nelle discaricheLe affermazioni di cui sopra sono in python-2.7.3 e simplejson 3.3.0 (con accelerazioni c) E per assicurarsi che anche la mia risposta non sia sensibile al tempo, è necessario eseguire i propri test per verificare poiché varia molto tra le versioni; non esiste una risposta facile che non sia sensibile al tempo.
import simplejson
# If this is True, then c speedups are enabled.
print bool(getattr(simplejson, '_speedups', False))
AGGIORNAMENTO: Di recente mi sono imbattuto in una libreria chiamata ujson che sta eseguendo ~ 3 volte più velocemente rispetto simplejson
ad alcuni test di base.
Ho fatto il benchmarking di json, simplejson e cjson.
$ python test_serialization_speed.py
--------------------
Encoding Tests
--------------------
Encoding: 100000 x {'m': 'asdsasdqwqw', 't': 3}
[ json] 1.12385 seconds for 100000 runs. avg: 0.011239ms
[simplejson] 0.44356 seconds for 100000 runs. avg: 0.004436ms
[ cjson] 0.09593 seconds for 100000 runs. avg: 0.000959ms
Encoding: 10000 x {'m': [['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19], ['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13, '14', 15, '16', 17, '18', 19]], 't': 3}
[ json] 7.76628 seconds for 10000 runs. avg: 0.776628ms
[simplejson] 0.51179 seconds for 10000 runs. avg: 0.051179ms
[ cjson] 0.44362 seconds for 10000 runs. avg: 0.044362ms
--------------------
Decoding Tests
--------------------
Decoding: 100000 x {"m": "asdsasdqwqw", "t": 3}
[ json] 3.32861 seconds for 100000 runs. avg: 0.033286ms
[simplejson] 0.37164 seconds for 100000 runs. avg: 0.003716ms
[ cjson] 0.03893 seconds for 100000 runs. avg: 0.000389ms
Decoding: 10000 x {"m": [["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19], ["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13, "14", 15, "16", 17, "18", 19]], "t": 3}
[ json] 37.26270 seconds for 10000 runs. avg: 3.726270ms
[simplejson] 0.56643 seconds for 10000 runs. avg: 0.056643ms
[ cjson] 0.33007 seconds for 10000 runs. avg: 0.033007ms
Alcuni valori sono serializzati in modo diverso tra simplejson e json.
In particolare, le istanze di collections.namedtuple
sono serializzate come matrici da json
ma come oggetti da simplejson
. È possibile ignorare questo comportamento passando namedtuple_as_object=False
a simplejson.dump
, ma per impostazione predefinita i comportamenti non corrispondono.
>>> import collections, simplejson, json
>>> TupleClass = collections.namedtuple("TupleClass", ("a", "b"))
>>> value = TupleClass(1, 2)
>>> json.dumps(value)
'[1, 2]'
>>> simplejson.dumps(value)
'{"a": 1, "b": 2}'
>>> simplejson.dumps(value, namedtuple_as_object=False)
'[1, 2]'
Ho riscontrato un'incompatibilità dell'API, con Python 2.7 vs simplejson 3.3.1 sta nel fatto che l'output produca oggetti str o unicode. per esempio
>>> from json import JSONDecoder
>>> jd = JSONDecoder()
>>> jd.decode("""{ "a":"b" }""")
{u'a': u'b'}
vs
>>> from simplejson import JSONDecoder
>>> jd = JSONDecoder()
>>> jd.decode("""{ "a":"b" }""")
{'a': 'b'}
Se la preferenza è usare simplejson, questo può essere risolto forzando la stringa dell'argomento in unicode, come in:
>>> from simplejson import JSONDecoder
>>> jd = JSONDecoder()
>>> jd.decode(unicode("""{ "a":"b" }""", "utf-8"))
{u'a': u'b'}
La coercizione richiede la conoscenza del set di caratteri originale, ad esempio:
>>> jd.decode(unicode("""{ "a": "ξηθννββωφρες" }"""))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'ascii' codec can't decode byte 0xce in position 8: ordinal not in range(128)
Questo non risolverà il problema 40
Ecco un confronto (ormai obsoleto) delle librerie Python JSON:
Confronto tra moduli JSON per Python ( collegamento all'archivio )
Indipendentemente dai risultati di questo confronto, è necessario utilizzare la libreria standard json se si utilizza Python 2.6. E .. potrebbe anche semplicemente usare simplejson altrimenti.
Il modulo simplejson è semplicemente 1,5 volte più veloce di json (Sul mio computer, con simplejson 2.1.1 e Python 2.7 x86).
Se lo desideri, puoi provare il benchmark: http://abral.altervista.org/jsonpickle-bench.zip Sul mio PC simplejson è più veloce di cPickle. Mi piacerebbe conoscere anche i tuoi benchmark!
Probabilmente, come detto Coady, la differenza tra simplejson e json è che simplejson include _speedups.c. Quindi, perché gli sviluppatori di Python non usano simplejson?
In python3, se hai una stringa di b'bytes'
, json
devi avere .decode()
il contenuto prima di poterlo caricare. simplejson
si prende cura di questo in modo da poterlo fare simplejson.loads(byte_string)
.
json
sembra più veloce che simplejson
in entrambi i casi di carichi e dump nell'ultima versione
Versioni testate:
risultati:
>>> def test(obj, call, data, times):
... s = datetime.now()
... print("calling: ", call, " in ", obj, " ", times, " times")
... for _ in range(times):
... r = getattr(obj, call)(data)
... e = datetime.now()
... print("total time: ", str(e-s))
... return r
>>> test(json, "dumps", data, 10000)
calling: dumps in <module 'json' from 'C:\\Users\\jophine.antony\\AppData\\Local\\Programs\\Python\\Python36-32\\lib\\json\\__init__.py'> 10000 times
total time: 0:00:00.054857
>>> test(simplejson, "dumps", data, 10000)
calling: dumps in <module 'simplejson' from 'C:\\Users\\jophine.antony\\AppData\\Local\\Programs\\Python\\Python36-32\\lib\\site-packages\\simplejson\\__init__.py'> 10000 times
total time: 0:00:00.419895
'{"1": 100, "2": "acs", "3.5": 3.5567, "d": [1, "23"], "e": {"a": "A"}}'
>>> test(json, "loads", strdata, 1000)
calling: loads in <module 'json' from 'C:\\Users\\jophine.antony\\AppData\\Local\\Programs\\Python\\Python36-32\\lib\\json\\__init__.py'> 1000 times
total time: 0:00:00.004985
{'1': 100, '2': 'acs', '3.5': 3.5567, 'd': [1, '23'], 'e': {'a': 'A'}}
>>> test(simplejson, "loads", strdata, 1000)
calling: loads in <module 'simplejson' from 'C:\\Users\\jophine.antony\\AppData\\Local\\Programs\\Python\\Python36-32\\lib\\site-packages\\simplejson\\__init__.py'> 1000 times
total time: 0:00:00.040890
{'1': 100, '2': 'acs', '3.5': 3.5567, 'd': [1, '23'], 'e': {'a': 'A'}}
Per le versioni:
json era più veloce di simplejson durante l'operazione di scarico ma entrambi mantenevano la stessa velocità durante le operazioni di carico
Mi sono imbattuto in questa domanda mentre cercavo di installare simplejson per Python 2.6. Avevo bisogno di usare 'object_pairs_hook' di json.load () per caricare un file json come OrderedDict. Avendo familiarità con le versioni più recenti di Python non mi sono reso conto che il modulo json per Python 2.6 non include "object_pairs_hook", quindi ho dovuto installare simplejson per questo scopo. Per esperienza personale, questo è il motivo per cui utilizzo simplejson al contrario del modulo json standard.
redefinition of unused 'json'