Secondo la pagina BitScan della programmazione degli scacchi e le mie misurazioni, sottrarre e xor è più veloce di negare e mascherare.
(Nota che se hai intenzione di contare gli zeri finali 0
, il metodo come lo ho restituito 63
mentre il negato e la maschera restituiscono 0
.)
Ecco una sottrazione a 64 bit e xor:
unsigned long v; // find the number of trailing zeros in 64-bit v
int r; // result goes here
static const int MultiplyDeBruijnBitPosition[64] =
{
0, 47, 1, 56, 48, 27, 2, 60, 57, 49, 41, 37, 28, 16, 3, 61,
54, 58, 35, 52, 50, 42, 21, 44, 38, 32, 29, 23, 17, 11, 4, 62,
46, 55, 26, 59, 40, 36, 15, 53, 34, 51, 20, 43, 31, 22, 10, 45,
25, 39, 14, 33, 19, 30, 9, 24, 13, 18, 8, 12, 7, 6, 5, 63
};
r = MultiplyDeBruijnBitPosition[((uint32_t)((v ^ (v-1)) * 0x03F79D71B4CB0A89U)) >> 58];
Per riferimento, ecco una versione a 64 bit del metodo negazione e maschera:
unsigned long v; // find the number of trailing zeros in 64-bit v
int r; // result goes here
static const int MultiplyDeBruijnBitPosition[64] =
{
0, 1, 48, 2, 57, 49, 28, 3, 61, 58, 50, 42, 38, 29, 17, 4,
62, 55, 59, 36, 53, 51, 43, 22, 45, 39, 33, 30, 24, 18, 12, 5,
63, 47, 56, 27, 60, 41, 37, 16, 54, 35, 52, 21, 44, 32, 23, 11,
46, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6
};
r = MultiplyDeBruijnBitPosition[((uint32_t)((v & -v) * 0x03F79D71B4CB0A89U)) >> 58];