Riprendo la mia dichiarazione. la somma non è il vincitore. Anche se è più veloce quando l'elenco è piccolo. Ma le prestazioni peggiorano significativamente con elenchi più grandi.
>>> timeit.Timer(
'[item for sublist in l for item in sublist]',
'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]] * 10000'
).timeit(100)
2.0440959930419922
La versione somma è ancora in esecuzione per più di un minuto e non ha ancora elaborato!
Per elenchi medi:
>>> timeit.Timer(
'[item for sublist in l for item in sublist]',
'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]] * 10'
).timeit()
20.126545906066895
>>> timeit.Timer(
'reduce(lambda x,y: x+y,l)',
'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]] * 10'
).timeit()
22.242258071899414
>>> timeit.Timer(
'sum(l, [])',
'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]] * 10'
).timeit()
16.449732065200806
Utilizzo di piccoli elenchi e timeit: numero = 1000000
>>> timeit.Timer(
'[item for sublist in l for item in sublist]',
'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]]'
).timeit()
2.4598159790039062
>>> timeit.Timer(
'reduce(lambda x,y: x+y,l)',
'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]]'
).timeit()
1.5289170742034912
>>> timeit.Timer(
'sum(l, [])',
'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]]'
).timeit()
1.0598428249359131