Cosa si intende con il termine "base computazionale"?


15

Cosa si intende con il termine "base computazionale" nel contesto dell'informatica quantistica e degli algoritmi quantistici?

Risposte:


6

Quando abbiamo solo un qubit, non c'è nulla di particolarmente speciale sulla base computazionale; è bello avere una base canonica. In pratica si potrebbe pensare che per prima cosa si implementa un gate con e , e quindi si dice che la base computazionale è la base di questo gate.ZZ2=ioZio

Tuttavia, quando parliamo di sistemi multi-qubit, la base computazionale è significativa. Viene dalla scelta di una base per ogni qubit e quindi dalla base che è il prodotto tensore di tutte queste basi. Scegliere la stessa base per ogni qubit è bello solo per mantenere tutto uniforme, e chiamarli e 1 è una buona scelta notazionale. La cosa veramente importante è che i nostri stati di base sono stati di prodotto attraverso i nostri qubit: gli stati di base computazionale possono essere preparati inizializzando i nostri qubit separatamente e quindi riunendoli. Questo non è vero per gli stati arbitrari! Ad esempio, lo stato del gatto 101richiede un circuito log approfondita per preparare da uno stato prodotto.12(|0n+|1n)


8

Il calcolo quantistico si occupa (principalmente) di sistemi quantistici a dimensione finita chiamati qubit . Se conosci la meccanica quantistica di base, allora sai che lo spazio di Hilbert di un qubit è , cioè lo spazio di Hilbert complesso bidimensionale su C (per le persone più tecniche, lo spazio di Hilbert è in realtà C P 1 ).C2CCP1

Pertanto, per descrivere i vettori (o fisicamente, lo stato quantico del qubit) in questo spazio di Hilbert bidimensionale abbiamo bisogno di almeno due elementi di base. Se pensi allo stato del qubit come a un vettore di colonna,

allora dovresti specificare qualia,bdevono specificare lo stato del qubit. Si noti che ciò che èa,bdipende da quale sia la base del sistema:possono esserci due vettori di colonne dall'aspetto diverso (in basi diverse) che rappresentano lo stesso stato| ψdel qubit. In ogni caso, abbiamo bisogno di alcune basi con cui lavorare e qui entra in gioco la "base computazionale".

[un'B],
un',Bun',B-|ψ

La base computazionale è semplicemente i due stati di base composti da (uno qualsiasi dei) due distinti stati quantistici in cui il qubit può essere fisicamente. Tuttavia, proprio come nell'algebra lineare, quali due stati ( linearmente indipendenti ) che scegli sono un po 'arbitrari (io dico un po' perché in alcune situazioni fisiche esiste una scelta naturale delle basi; vedi Einselection ).

-||σz


Il problema di base preferito può essere risolto in modo più naturale con il metodo del frame di coerenza rispetto al metodo di einselection. - Fonte: "Coherence Frame, Entanglement Conservation, Einselection" arxiv.org/abs/1104.5550 .
Rob,

5

|0|1

Per fare alcuni esempi:

  1. Se i qubit sono codificati nella polarizzazione dei singoli fotoni, la base computazionale è in genere la base formata dagli stati di polarizzazione orizzontale e verticale del fotone.
  2. Sz
  3. Se un qubit è codificato nella presenza o assenza di un fotone in una data modalità, allora la "base computazionale" è, beh, lo stato occupazionale di quella modalità.

Potrei andare avanti. Si parla spesso anche di "basi computazionali" per stati di dimensione superiore (qudits), nel qual caso vale la stessa cosa: una base viene chiamata "computazionale" quando è la più "naturale" in un determinato contesto.

{|0,|1,...}


0

Uno stato quantico è un vettore in uno spazio vettoriale ad alta dimensione (lo spazio di Hilbert). C'è una base naturale per qualsiasi algoritmo quantistico (o computer quantistico) che si basa su qubit: gli stati che corrispondono ai numeri binari sono speciali, sono i cosiddetti stati di base computazionali.

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.