Come faccio a dimostrare che uno stato a due qubit è uno stato impigliato?


18

Lo stato di Bell è uno stato entangled. Ma perché è così? Come posso dimostrarlo matematicamente?|Φ+=12(|00+|11)

Risposte:


19

Definizione


Uno stato a due qubit è uno stato entangled se e solo se non ci non esistono due stati uno-qubit | un = alfa | 0 + ß | 1 C 2 e | b = y | 0 + À | 1 C 2 tali che | un | b = | ψ|ψC4|a=α|0+β|1C2|b=γ|0+λ|1C2 , Dove indica ilprodotto tensorialee α , β , γ , À C .|a|b=|ψα,β,γ,λC

Quindi, per dimostrare che lo stato di Bell è uno stato di entanglement, dobbiamo semplicemente dimostrare che non esistono due stati uno-qubit| une| btali che| Φ+=| un| b.|Φ+=12(|00+|11)|a|b|Φ+=|a|b

Prova


Supporre che

|Φ+=|a|b=(α|0+β|1)(γ|0+λ|1)

Ora possiamo semplicemente applicare la proprietà distributiva per ottenere

|Φ+==(αγ|00+αλ|01+βγ|10+βλ|11)

Questo deve essere uguale a , che è, dobbiamo trovare i coefficientialfa,β,γeλ, tali che12(|00+|11)αβγλ

12(|00+|11)=(αγ|00+αλ|01+βγ|10+βλ|11)

Osservare che, nell'espressione , vogliamo mantenere sia | 00 e | 11 . Quindi, α e γ , che sono i coefficienti di | 00 , non può essere pari a zero; in altre parole, dobbiamo avere α 0 e γ 0 . Allo stesso modo,αγ|00+αλ|01+βγ|10+βλ|11|00|11αγ|00α0γ0β and λ, which are the complex numbers multiplying |11 cannot be zero, i.e. β0 and λ0. So, all complex numbers α, β, γ and λ must be different from zero.

|Φ+, we want to get rid of |01 and |10. So, one of the numbers (or both) multiplying |01 (and |10) in the expression αγ|00+αλ|01+βγ|10+βλ|11, i.e. α and λ (and, respectively, β and γ), must be equal to zero. But we have just seen that α, β, γ and λ must all be different from zero. So, we cannot find a combination of complex numbers α, β, γ and λ such that

12(|00+|11)=(αγ|00+αλ|01+βγ|10+βλ|11)

In other words, we are not able to express |Φ+ as a tensor product of two one-qubit states. Therefore, |Φ+ is a entangled state.

We can perform a similar proof for other Bell states or, in general, if we want to prove that a state is entangled.


2
Wow you answered your own question with a beautiful, understandable proof. Not something you see every day. This helped me thank you.
YungGun

11

A two qudit pure state is separable if and only if it can be written in the form

|Ψ=|ψ|ϕ
for arbitrary single qudit states |ψ and |ϕ. Otherwise, it is entangled.

To determine if the pure state is entangled, one could try a brute force method of attempting to find satisfying states |ψ and |ϕ, as in this answer. This is inelegant, and hard work in the general case. A more straightforward way to prove whether this pure state is entangled is the calculate the reduced density matrix ρ for one of the qudits, i.e. by tracing out the other. The state is separable if and only if ρ has rank 1. Otherwise it is entangled. Mathematically, you can test the rank condition simply by evaluating Tr(ρ2). The original state is separable if and only if this value is 1. Otherwise the state is entangled.

For example, imagine one has a pure separable state |Ψ=|ψ|ϕ. The reduced density matrix on A is

ρA=TrB(|ΨΨ|)=|ψψ|,
and
Tr(ρA2)=Tr(|ψψ||ψψ|)=Tr(|ψψ|)=1.
Thus, we have a separable state.

Meanwhile, if we take |Ψ=12(|00+|11), then

ρA=TrB(|ΨΨ|)=12(|00|+|11|)=12I
and
Tr(ρA2)=14Tr(II)=12
Since this value is not 1, we have an entangled state.

If you wish to know about detecting entanglement in mixed states (not pure states), this is less straightforward, but for two qubits there is a necessary and sufficient condition for separability: positivity under the partial transpose operation.


+1 This is a much more elegant method compared to the brute force algorithm.
Sanchayan Dutta

What are A and B? Are these just the qudits themselves?
Dohleman

@Dohleman Yes, they're just labels for the two parts of the system, one part held by A (Alice), and the other by B (Bob). In this case it's the two qudits.
DaftWullie
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.