TL: DR; Il tuo codice è già corretto e "pulito".
Vedo un sacco di persone preoccuparsi della risposta, ma a tutti manca la foresta tra gli alberi. Facciamo l'informatica completa e l'analisi matematica per comprendere completamente questa domanda.
Innanzitutto, notiamo che abbiamo 3 variabili, ognuna con 3 stati: <, =, o>. Il numero totale di permutazioni è 3 ^ 3 = 27 stati, che assegnerò un numero univoco, indicato con P #, per ogni stato. Questo numero P # è un sistema numerico fattoriale .
Enumerando tutte le permutazioni che abbiamo:
a ? b | a ? c | b ? c |P#| State
------+-------+-------+--+------------
a < b | a < c | b < c | 0| C
a = b | a < c | b < c | 1| C
a > b | a < c | b < c | 2| C
a < b | a = c | b < c | 3| impossible a<b b<a
a = b | a = c | b < c | 4| impossible a<a
a > b | a = c | b < c | 5| A=C > B
a < b | a > c | b < c | 6| impossible a<c a>c
a = b | a > c | b < c | 7| impossible a<c a>c
a > b | a > c | b < c | 8| A
a < b | a < c | b = c | 9| B=C > A
a = b | a < c | b = c |10| impossible a<a
a > b | a < c | b = c |11| impossible a<c a>c
a < b | a = c | b = c |12| impossible a<a
a = b | a = c | b = c |13| A=B=C
a > b | a = c | b = c |14| impossible a>a
a < b | a > c | b = c |15| impossible a<c a>c
a = b | a > c | b = c |16| impossible a>a
a > b | a > c | b = c |17| A
a < b | a < c | b > c |18| B
a = b | a < c | b > c |19| impossible b<c b>c
a > b | a < c | b > c |20| impossible a<c a>c
a < b | a = c | b > c |21| B
a = b | a = c | b > c |22| impossible a>a
a > b | a = c | b > c |23| impossible c>b b>c
a < b | a > c | b > c |24| B
a = b | a > c | b > c |25| A=B > C
a > b | a > c | b > c |26| A
Dall'ispezione vediamo che abbiamo:
- 3 indica dove A è il massimo,
- 3 indica dove B è il massimo,
- 3 indica dove C è il massimo e
- 4 stati in cui A = B o B = C.
Scriviamo un programma (vedi la nota a piè di pagina) per elencare tutte queste permutazioni con valori per A, B e C. Ordinamento stabile per P #:
a ?? b | a ?? c | b ?? c |P#| State
1 < 2 | 1 < 3 | 2 < 3 | 0| C
1 == 1 | 1 < 2 | 1 < 2 | 1| C
1 == 1 | 1 < 3 | 1 < 3 | 1| C
2 == 2 | 2 < 3 | 2 < 3 | 1| C
2 > 1 | 2 < 3 | 1 < 3 | 2| C
2 > 1 | 2 == 2 | 1 < 2 | 5| ??
3 > 1 | 3 == 3 | 1 < 3 | 5| ??
3 > 2 | 3 == 3 | 2 < 3 | 5| ??
3 > 1 | 3 > 2 | 1 < 2 | 8| A
1 < 2 | 1 < 2 | 2 == 2 | 9| ??
1 < 3 | 1 < 3 | 3 == 3 | 9| ??
2 < 3 | 2 < 3 | 3 == 3 | 9| ??
1 == 1 | 1 == 1 | 1 == 1 |13| ??
2 == 2 | 2 == 2 | 2 == 2 |13| ??
3 == 3 | 3 == 3 | 3 == 3 |13| ??
2 > 1 | 2 > 1 | 1 == 1 |17| A
3 > 1 | 3 > 1 | 1 == 1 |17| A
3 > 2 | 3 > 2 | 2 == 2 |17| A
1 < 3 | 1 < 2 | 3 > 2 |18| B
1 < 2 | 1 == 1 | 2 > 1 |21| B
1 < 3 | 1 == 1 | 3 > 1 |21| B
2 < 3 | 2 == 2 | 3 > 2 |21| B
2 < 3 | 2 > 1 | 3 > 1 |24| B
2 == 2 | 2 > 1 | 2 > 1 |25| ??
3 == 3 | 3 > 1 | 3 > 1 |25| ??
3 == 3 | 3 > 2 | 3 > 2 |25| ??
3 > 2 | 3 > 1 | 2 > 1 |26| A
Nel caso ti stavi chiedendo come sapessi quali stati P # erano impossibili, ora lo sai. :-)
Il numero minimo di confronti per determinare l'ordine è:
Log2 (27) = Log (27) / Log (2) = ~ 4.75 = 5 confronti
cioè coredump ha dato il numero minimo corretto 5 di confronti. Vorrei formattare il suo codice come:
status_t index_of_max_3(a,b,c)
{
if (a > b) {
if (a == c) return DONT_KNOW; // max a or c
if (a > c) return MOSTLY_A ;
else return MOSTLY_C ;
} else {
if (a == b) return DONT_KNOW; // max a or b
if (b > c) return MOSTLY_B ;
else return MOSTLY_C ;
}
}
Per il tuo problema non ci interessa testare l'uguaglianza, quindi possiamo omettere 2 test.
Non importa quanto sia pulito / cattivo il codice se ottiene la risposta sbagliata, quindi questo è un buon segno che stai gestendo tutti i casi correttamente!
Successivamente, per quanto riguarda la semplicità, le persone continuano a cercare di "migliorare" la risposta, dove pensano che migliorare significhi "ottimizzare" il numero di confronti, ma non è esattamente quello che stai chiedendo. Hai confuso tutti quelli in cui hai chiesto "Sento che potrebbe esserci un migliore" ma non hai definito cosa significa "meglio". Meno confronti? Meno codice? Confronti ottimali?
Ora, poiché stai chiedendo informazioni sulla leggibilità del codice (data la correttezza), apporterei una sola modifica al tuo codice per leggibilità: Allinea il primo test con gli altri.
if (a > b && a > c)
status = MOSTLY_A;
else if (b > a && b > c)
status = MOSTLY_B;
else if (c > a && c > b)
status = MOSTLY_C;
else
status = DONT_KNOW; // a=b or b=c, we don't care
Personalmente lo scriverei nel modo seguente ma questo potrebbe essere troppo poco ortodosso per i tuoi standard di codifica:
if (a > b && a > c) status = MOSTLY_A ;
else if (b > a && b > c) status = MOSTLY_B ;
else if (c > a && c > b) status = MOSTLY_C ;
else /* a==b || b ==c*/status = DONT_KNOW; // a=b or b=c, we don't care
Nota a piè di pagina: ecco il codice C ++ per generare le permutazioni:
#include <stdio.h>
char txt[] = "< == > ";
enum cmp { LESS, EQUAL, GREATER };
int val[3] = { 1, 2, 3 };
enum state { DONT_KNOW, MOSTLY_A, MOSTLY_B, MOSTLY_C };
char descr[]= "??A B C ";
cmp Compare( int x, int y ) {
if( x < y ) return LESS;
if( x > y ) return GREATER;
/* x==y */ return EQUAL;
}
int main() {
int i, j, k;
int a, b, c;
printf( "a ?? b | a ?? c | b ?? c |P#| State\n" );
for( i = 0; i < 3; i++ ) {
a = val[ i ];
for( j = 0; j < 3; j++ ) {
b = val[ j ];
for( k = 0; k < 3; k++ ) {
c = val[ k ];
int cmpAB = Compare( a, b );
int cmpAC = Compare( a, c );
int cmpBC = Compare( b, c );
int n = (cmpBC * 9) + (cmpAC * 3) + cmpAB; // Reconstruct unique P#
printf( "%d %c%c %d | %d %c%c %d | %d %c%c %d |%2d| "
, a, txt[cmpAB*2+0], txt[cmpAB*2+1], b
, a, txt[cmpAC*2+0], txt[cmpAC*2+1], c
, b, txt[cmpBC*2+0], txt[cmpBC*2+1], c
, n
);
int status;
if (a > b && a > c) status = MOSTLY_A;
else if (b > a && b > c) status = MOSTLY_B;
else if (c > a && c > b) status = MOSTLY_C;
else /* a ==b || b== c*/status = DONT_KNOW; // a=b, or b=c
printf( "%c%c\n", descr[status*2+0], descr[status*2+1] );
}
}
}
return 0;
}
Modifiche: in base al feedback, spostato TL: DR in alto, tabella non ordinata rimossa, chiarito 27, codice ripulito, stati impossibili descritti.