Derivare numericamente gli MLE di GLMM è difficile e, in pratica, lo so, non dovremmo usare l'ottimizzazione della forza bruta (ad esempio, usando optim
in modo semplice). Ma per il mio scopo educativo, voglio provarlo per assicurarmi di capire correttamente il modello (vedi il codice qui sotto). Ho scoperto che ottengo sempre risultati incoerenti da glmer()
.
In particolare, anche se uso gli MLE glmer
come valori iniziali, in base alla funzione di probabilità che ho scritto ( negloglik
), non sono MLE ( opt1$value
è più piccolo di opt2
). Penso che due potenziali motivi siano:
negloglik
non è scritto bene in modo che ci sia troppo errore numerico in esso, e- le specifiche del modello sono errate. Per le specifiche del modello, il modello previsto è:
p <- function(x,a,b) exp(a+b*x)/(1+exp(a+b*x))
a <- -4 # fixed effect (intercept)
b <- 1 # fixed effect (slope)
s <- 1.5 # random effect (intercept)
N <- 8
x <- rep(2:6, each=20)
n <- length(x)
id <- 1:n
r <- rnorm(n, 0, s)
y <- rbinom(n, N, prob=p(x,a+r,b))
negloglik <- function(p, x, y, N){
a <- p[1]
b <- p[2]
s <- p[3]
Q <- 100 # Inf does not work well
L_i <- function(r,x,y){
dbinom(y, size=N, prob=p(x, a+r, b))*dnorm(r, 0, s)
}
-sum(log(apply(cbind(y,x), 1, function(x){
integrate(L_i,lower=-Q,upper=Q,x=x[2],y=x[1],rel.tol=1e-14)$value
})))
}
library(lme4)
(model <- glmer(cbind(y,N-y)~x+(1|id),family=binomial))
opt0 <- optim(c(fixef(model), sqrt(VarCorr(model)$id[1])), negloglik,
x=x, y=y, N=N, control=list(reltol=1e-50,maxit=10000))
opt1 <- negloglik(c(fixef(model), sqrt(VarCorr(model)$id[1])), x=x, y=y, N=N)
opt0$value # negative loglikelihood from optim
opt1 # negative loglikelihood using glmer generated parameters
-logLik(model)==opt1 # but these are substantially different...
Un esempio più semplice
Per ridurre la possibilità di avere un grande errore numerico, ho creato un esempio più semplice.
y <- c(0, 3)
N <- c(8, 8)
id <- 1:length(y)
negloglik <- function(p, y, N){
a <- p[1]
s <- p[2]
Q <- 100 # Inf does not work well
L_i <- function(r,y){
dbinom(y, size=N, prob=exp(a+r)/(1+exp(a+r)))*dnorm(r,0,s)
}
-sum(log(sapply(y, function(x){
integrate(L_i,lower=-Q, upper=Q, y=x, rel.tol=1e-14)$value
})))
}
library(lme4)
(model <- glmer(cbind(y,N-y)~1+(1|id), family=binomial))
MLE.glmer <- c(fixef(model), sqrt(VarCorr(model)$id[1]))
opt0 <- optim(MLE.glmer, negloglik, y=y, N=N, control=list(reltol=1e-50,maxit=10000))
MLE.optim <- opt0$par
MLE.glmer # MLEs from glmer
MLE.optim # MLEs from optim
L_i <- function(r,y,N,a,s) dbinom(y,size=N,prob=exp(a+r)/(1+exp(a+r)))*dnorm(r,0,s)
L1 <- integrate(L_i,lower=-100, upper=100, y=y[1], N=N[1], a=MLE.glmer[1],
s=MLE.glmer[2], rel.tol=1e-10)$value
L2 <- integrate(L_i, lower=-100, upper=100, y=y[2], N=N[2], a=MLE.glmer[1],
s=MLE.glmer[2], rel.tol=1e-10)$value
(log(L1)+log(L2)) # loglikelihood (manual computation)
logLik(model) # loglikelihood from glmer
MLE.glmer
e MLE.optim
) soprattutto per l'effetto casuale (vedi il nuovo esempio), quindi non si basa solo su un fattore costante nei valori di probabilità, penso.
nAGQ
in ha glmer
reso comparabili gli MLE. La precisione predefinita di glmer
non era molto buona.