Perché questa imputazione multipla è di bassa qualità?


9

Considera il seguente codice R:

> data <- data.frame(
            a=c(NA,2,3,4,5,6),b=c(2.2,NA,6.1,8.3,10.2,12.13),c=c(4.2,7.9,NA,16.1,19.9,23))
> data
   a     b    c
1 NA  2.20  4.2
2  2    NA  7.9
3  3  6.10   NA
4  4  8.30 16.1
5  5 10.20 19.9
6  6 12.13 23.0

Come puoi vedere, ho progettato i dati in modo approssimativo c = 2*b = 4*a. In quanto tale, mi aspetto che i valori mancanti siano presenti a=1, b=2, c=12. Quindi ho eseguito l'analisi:

> imp <- mi(data)
Beginning Multiple Imputation ( Sat Oct 18 03:02:41 2014 ):
Iteration 1 
 Chain 1 : a*  b*  c*  
 Chain 2 : a*  b*  c*  
 Chain 3 : a*  b*  c*  
Iteration 2 
 Chain 1 : a*  b   c   
 Chain 2 : a*  b*  c*  
 Chain 3 : a   b*  c   
Iteration 3 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a*  b*  c*  
Iteration 4 
 Chain 1 : a   b   c   
 Chain 2 : a   b*  c   
 Chain 3 : a*  b   c   
Iteration 5 
 Chain 1 : a   b   c*  
 Chain 2 : a   b*  c   
 Chain 3 : a   b*  c   
Iteration 6 
 Chain 1 : a*  b   c*  
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 7 
 Chain 1 : a   b   c   
 Chain 2 : a   b*  c   
 Chain 3 : a   b   c*  
Iteration 8 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b*  c*  
Iteration 9 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c*  
 Chain 3 : a   b   c   
Iteration 10 
 Chain 1 : a   b*  c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 11 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 12 
 Chain 1 : a   b   c   
 Chain 2 : a*  b   c   
 Chain 3 : a   b   c   
Iteration 13 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c*  
 Chain 3 : a   b   c*  
Iteration 14 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 15 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c*  
Iteration 16 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b*  c   
Iteration 17 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 18 
 Chain 1 : a   b   c*  
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 19 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c*  
Iteration 20 
 Chain 1 : a   b   c*  
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 21 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 22 
 Chain 1 : a   b   c*  
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 23 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 24 
 Chain 1 : a   b   c*  
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 25 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 26 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 27 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 28 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 29 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
mi converged ( Sat Oct 18 03:02:45 2014 )
Run 20 more iterations to mitigate the influence of the noise...
Beginning Multiple Imputation ( Sat Oct 18 03:02:45 2014 ):
Iteration 1 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 2 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 3 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 4 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 5 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 6 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 7 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 8 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 9 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 10 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 11 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 12 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 13 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 14 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 15 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 16 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 17 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 18 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 19 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 20 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Reached the maximum iteration, mi did not converge ( Sat Oct 18 03:02:48 2014 )

E infine osservato il set di dati completato:

> mi.completed(imp)
[[1]]
  a     b    c
1 2  2.20  4.2
2 2  2.20  7.9
3 3  6.10 16.1
4 4  8.30 16.1
5 5 10.20 19.9
6 6 12.13 23.0

[[2]]
  a     b    c
1 2  2.20  4.2
2 2  6.10  7.9
3 3  6.10  7.9
4 4  8.30 16.1
5 5 10.20 19.9
6 6 12.13 23.0

[[3]]
  a     b    c
1 2  2.20  4.2
2 2  2.20  7.9
3 3  6.10  7.9
4 4  8.30 16.1
5 5 10.20 19.9
6 6 12.13 23.0

Come puoi vedere, i valori imputati non sono quelli che mi aspettavo. In realtà, sembrano il risultato di una singola imputazione poiché i valori mancanti sono stati apparentemente presi da record adiacenti.

Cosa mi sto perdendo?

Dovrei notare che la mia "conoscenza" nelle statistiche è per lo più limitata a ciò che ricordo vagamente da un corso introduttivo che ho seguito ~ 14 anni fa. Sto solo cercando un modo semplice per imputare i valori mancanti, non deve essere il più ottimizzato, ma ha bisogno di dare un senso (che non posso dare a questi risultati). Potrebbe anche essere il caso che minon sia l'approccio corretto per ottenere ciò che voglio (forse invece dovrebbe essere usato predire ), quindi sono aperto ai suggerimenti.

Ho anche provato un approccio simile mice, che ha portato a risultati simili.

AGGIORNAMENTO Amelia funziona alla grande. Sarebbe comunque interessante sapere cosa mi manca con i mi / topi però.


1
Cosa stai cercando di fare con l'imputazione multipla in generale? È difficile per me rispondere a questa domanda senza un po 'più di contesto. [Non trovo affatto sorprendente che la qualità della tua imputazione fosse bassa dato che stai lavorando con solo tre variabili e sei record]
Patrick S. Forscher,

@ PatrickS.Forscher avevi ragione. Ho appena provato un test simile con 100 record e i risultati sono stati come mi aspettavo. Per favore, rispondi in modo che io possa accettarlo, e se tu potessi specificare alcuni minimi per un imputazione di successo sarebbe fantastico.
t0x1n

Cosa diresti dei seguenti risultati? > mi.completed(imp) [[1]] a b c 1 0.289 2.20 4.2 2 2.000 2.57 7.9 3 3.000 6.10 12.7 4 4.000 8.30 16.1 5 5.000 10.20 19.9 6 6.000 12.13 23.0 [[2]] a b c 1 0.603 2.20 4.2 2 2.000 5.82 7.9 3 3.000 6.10 13.4 4 4.000 8.30 16.1 5 5.000 10.20 19.9 6 6.000 12.13 23.0 [[3]] a b c 1 1.05 2.20 4.2 2 2.00 4.18 7.9 3 3.00 6.10 12.0 4 4.00 8.30 16.1 5 5.00 10.20 19.9 6 6.00 12.13 23.0Mi dispiace per la formattazione, ma immagino che sia il massimo che potrei fare in un commento.
Aleksandr Blekh,

Amelia II è espressamente per imputazione multipla di serie temporali trasversali (aka panel panel). MICE è per i dati di serie temporali non trasversali (o almeno, MICE produce scarse imputazioni per tali serie temporali, vedere Honaker, J. e King, G. (2010). Cosa fare per i valori mancanti nelle serie temporali incrociate dati di sezione American Journal of Political Science , 54 (2): 561–581.)
Alexis

@AleksandrBlekh Neanche a me piacciono, mi aspetto qualcosa di più vicino a x/ 2x/4x
t0x1n

Risposte:


13

Dato che stai usando sei casi [record] e tre variabili, la qualità della tua imputazione sarà piuttosto bassa.

m set di dati separati (tornerò su come questi valori imputati sono derivati ​​più avanti in questa risposta). I valori imputati variano leggermente da set di dati a set di dati.

qmqmU¯qmB

BU¯

U¯Bγ ed è data dalla seguente formula:

γ=r+2df+3r+1

rBU¯ :

r=(1+1m)BU¯

Brγγ

dfγBU¯df

df=(m1)(1+mU¯(m+1)B)2

Bdfγ

B

  1. B
  2. B

B

B

qmqmmq di tutti i set di dati imputati.

Pertanto, in generale, aumentando il numero di casi (o, più precisamente, diminuendo la percentuale di valori mancanti) si aumenterà la qualità di imputazione.

B

B

qm imputati set di dati.

Pertanto, in generale, aumentare il numero di variabili disponibili in un set di dati aumenterà la qualità di imputazione, purché tali variabili extra siano informative sui valori mancanti.

Riferimenti

Rubin, DB (1996). Imputazione multipla dopo 18+ anni. Journal of American Statistical Association , 91, 473-489.

Schafer, JL (1999). Imputazione multipla: un primer. Metodi statistici nella ricerca medica , 8, 3-15.

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.