Questo è in realtà un problema estremamente sofisticato e una domanda difficile da parte del tuo docente!
In termini di organizzazione dei dati, un rettangolo 1070 x 10 va bene. Ad esempio, in R:
> conflict.data <- data.frame(
+ confl = sample(0:1, 1070, replace=T),
+ country = factor(rep(1:107,10)),
+ period = factor(rep(1:10, rep(107,10))),
+ landdeg = sample(c("Type1", "Type2"), 1070, replace=T),
+ popincrease = sample(0:1, 1070, replace=T),
+ liveli =sample(0:1, 1070, replace=T),
+ popden = sample(c("Low", "Med", "High"), 1070, replace=T),
+ NDVI = rnorm(1070,100,10),
+ NDVIdecl1 = sample(0:1, 1070, replace=T),
+ NDVIdecl2 = sample(0:1, 1070, replace=T))
> head(conflict.data)
confl country period landdeg popincrease liveli popden NDVI NDVIdecl1 NDVIdecl2
1 1 1 1 Type1 1 0 Low 113.4744 0 1
2 1 2 1 Type2 1 1 High 103.2979 0 0
3 0 3 1 Type2 1 1 Med 109.1200 1 1
4 1 4 1 Type2 0 1 Low 112.1574 1 0
5 0 5 1 Type1 0 0 High 109.9875 0 1
6 1 6 1 Type1 1 0 Low 109.2785 0 0
> summary(conflict.data)
confl country period landdeg popincrease liveli popden NDVI NDVIdecl1 NDVIdecl2
Min. :0.0000 1 : 10 1 :107 Type1:535 Min. :0.0000 Min. :0.0000 High:361 Min. : 68.71 Min. :0.0000 Min. :0.0000
1st Qu.:0.0000 2 : 10 2 :107 Type2:535 1st Qu.:0.0000 1st Qu.:0.0000 Low :340 1st Qu.: 93.25 1st Qu.:0.0000 1st Qu.:0.0000
Median :1.0000 3 : 10 3 :107 Median :1.0000 Median :1.0000 Med :369 Median : 99.65 Median :1.0000 Median :0.0000
Mean :0.5009 4 : 10 4 :107 Mean :0.5028 Mean :0.5056 Mean : 99.84 Mean :0.5121 Mean :0.4888
3rd Qu.:1.0000 5 : 10 5 :107 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:106.99 3rd Qu.:1.0000 3rd Qu.:1.0000
Max. :1.0000 6 : 10 6 :107 Max. :1.0000 Max. :1.0000 Max. :130.13 Max. :1.0000 Max. :1.0000
(Other):1010 (Other):428
> dim(conflict.data)
[1] 1070 10
Per adattare un modello, la funzione glm () come suggerisce @ gui11aume farà le basi ...
mod <- glm(confl~., family="binomial", data=conflict.data)
anova(mod)
... ma questo ha il problema che tratta il "paese" (presumo che tu abbia il Paese come 107 unità) come un effetto fisso, mentre un effetto casuale è più appropriato. Considera anche il periodo come un fattore semplice, nessuna autocorrelazione consentita.
Puoi affrontare il primo problema con un modello di effetti misti lineari generalizzati come ad esempio il pacchetto lme4 di Bates et al in R. C'è una bella introduzione ad alcuni aspetti di questo qui . Qualcosa di simile a
library(lme4)
mod2 <- lmer(confl ~ landdeg + popincrease + liveli + popden +
NDVI + NDVIdecl1 + NDVIdecl2 + (1|country) +(1|period), family=binomial,
data=conflict.data)
summary(mod2)
sarebbe un passo avanti.
Ora l'ultimo problema che rimane è l'autocorrelazione tra i 10 periodi. Fondamentalmente, i tuoi 10 punti dati su ciascun paese non valgono quanto se fossero 10 punti indipendenti e identici distribuiti in modo casuale. Non sono a conoscenza di una soluzione software ampiamente disponibile per l'autocorrelazione nei residui di un modello multilivello con una risposta non normale. Certamente non è implementato in lme4. Altri potrebbero sapere più di me.