Qual è la differenza tra regressione lineare "regolare" e regressione lineare di apprendimento profondo?


12

Voglio conoscere la differenza tra regressione lineare in un'analisi di apprendimento automatico regolare e regressione lineare in un ambiente di "apprendimento profondo". Quali algoritmi vengono utilizzati per la regressione lineare in contesti di apprendimento profondo.

Risposte:


12

Supponendo che con l'apprendimento profondo intendevi reti più precisamente neurali: una rete neurale feedforward completamente connessa alla vaniglia con solo funzioni di attivazione lineare eseguirà la regressione lineare, indipendentemente da quanti strati abbia. Una differenza è che con una rete neurale si usa tipicamente una discesa a gradiente, mentre con una regressione lineare "normale" si usa l'equazione normale se possibile (quando il numero di funzioni non è troppo grande).

Esempio di una rete neurale feedforward completamente connessa senza strato nascosto e utilizzo di una funzione di attivazione lineare (ovvero la funzione di attivazione dell'identità):

inserisci qui la descrizione dell'immagine

Se si sostituisce la funzione di attivazione del layer di output con una funzione sigmoid, la rete neurale esegue la regressione logistica. Se si sostituisce la funzione di attivazione del layer di output con una funzione softmax e si aggiungono alcune unità di output, la rete neurale esegue la regressione logistica multiclasse: Differenza tra regressione logistica e reti neurali . Se si sostituisce la funzione di costo con la perdita della cerniera , la rete neurale è un SVM ottimizzato nella sua forma originale: http://cs231n.github.io/linear-classify/ .


Ecco l'esempio mostrato nell'immagine sopra programmata in TensorFlow:

""" Linear Regression Example """
# https://github.com/tflearn/tflearn/blob/master/examples/basics/linear_regression.py

from __future__ import absolute_import, division, print_function

import tflearn

# Regression data
X = [3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1]
Y = [1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3]

# Linear Regression graph
input_ = tflearn.input_data(shape=[None])
linear = tflearn.single_unit(input_)
regression = tflearn.regression(linear, optimizer='sgd', loss='mean_square',
                                metric='R2', learning_rate=0.01)
m = tflearn.DNN(regression)
m.fit(X, Y, n_epoch=1000, show_metric=True, snapshot_epoch=False)

print("\nRegression result:")
print("Y = " + str(m.get_weights(linear.W)) +
      "*X + " + str(m.get_weights(linear.b)))

print("\nTest prediction for x = 3.2, 3.3, 3.4:")
print(m.predict([3.2, 3.3, 3.4]))
# should output (close, not exact) y = [1.5315033197402954, 1.5585315227508545, 1.5855598449707031]

Ecco uno snippet di codice che non utilizza alcuna libreria di rete neurale:

# From http://briandolhansky.com/blog/artificial-neural-networks-linear-regression-part-1
import matplotlib.pyplot as plt
import numpy as np

# Load the data and create the data matrices X and Y
# This creates a feature vector X with a column of ones (bias)
# and a column of car weights.
# The target vector Y is a column of MPG values for each car.
X_file = np.genfromtxt('mpg.csv', delimiter=',', skip_header=1)
N = np.shape(X_file)[0]
X = np.hstack((np.ones(N).reshape(N, 1), X_file[:, 4].reshape(N, 1)))
Y = X_file[:, 0]

# Standardize the input 
X[:, 1] = (X[:, 1]-np.mean(X[:, 1]))/np.std(X[:, 1])

# There are two weights, the bias weight and the feature weight
w = np.array([0, 0])

# Start batch gradient descent, it will run for max_iter epochs and have a step
# size eta
max_iter = 100
eta = 1E-3
for t in range(0, max_iter):
    # We need to iterate over each data point for one epoch
    grad_t = np.array([0., 0.])
    for i in range(0, N):
        x_i = X[i, :]
        y_i = Y[i]
        # Dot product, computes h(x_i, w)
        h = np.dot(w, x_i)-y_i
        grad_t += 2*x_i*h

    # Update the weights
    w = w - eta*grad_t
print "Weights found:",w

# Plot the data and best fit line
tt = np.linspace(np.min(X[:, 1]), np.max(X[:, 1]), 10)
bf_line = w[0]+w[1]*tt

plt.plot(X[:, 1], Y, 'kx', tt, bf_line, 'r-')
plt.xlabel('Weight (Normalized)')
plt.ylabel('MPG')
plt.title('ANN Regression on 1D MPG Data')

plt.savefig('mpg.png')

plt.show()

File di dati mpg.csv(~ 50% abbreviato a causa della limitazione della dimensione della risposta di Stack Exchange):

mpg (n),cylinders (n),displacement (n),horsepower (n),weight (n),acceleration (n),year (n),origin (n), name (s)
18.000000,8.000000,307.000000,130.000000,3504.000000,12.000000,70.000000,1.000000
15.000000,8.000000,350.000000,165.000000,3693.000000,11.500000,70.000000,1.000000
18.000000,8.000000,318.000000,150.000000,3436.000000,11.000000,70.000000,1.000000
16.000000,8.000000,304.000000,150.000000,3433.000000,12.000000,70.000000,1.000000
17.000000,8.000000,302.000000,140.000000,3449.000000,10.500000,70.000000,1.000000
15.000000,8.000000,429.000000,198.000000,4341.000000,10.000000,70.000000,1.000000
14.000000,8.000000,454.000000,220.000000,4354.000000,9.000000,70.000000,1.000000
14.000000,8.000000,440.000000,215.000000,4312.000000,8.500000,70.000000,1.000000
14.000000,8.000000,455.000000,225.000000,4425.000000,10.000000,70.000000,1.000000
15.000000,8.000000,390.000000,190.000000,3850.000000,8.500000,70.000000,1.000000
15.000000,8.000000,383.000000,170.000000,3563.000000,10.000000,70.000000,1.000000
14.000000,8.000000,340.000000,160.000000,3609.000000,8.000000,70.000000,1.000000
15.000000,8.000000,400.000000,150.000000,3761.000000,9.500000,70.000000,1.000000
14.000000,8.000000,455.000000,225.000000,3086.000000,10.000000,70.000000,1.000000
24.000000,4.000000,113.000000,95.000000,2372.000000,15.000000,70.000000,3.000000
22.000000,6.000000,198.000000,95.000000,2833.000000,15.500000,70.000000,1.000000
18.000000,6.000000,199.000000,97.000000,2774.000000,15.500000,70.000000,1.000000
21.000000,6.000000,200.000000,85.000000,2587.000000,16.000000,70.000000,1.000000
27.000000,4.000000,97.000000,88.000000,2130.000000,14.500000,70.000000,3.000000
26.000000,4.000000,97.000000,46.000000,1835.000000,20.500000,70.000000,2.000000
25.000000,4.000000,110.000000,87.000000,2672.000000,17.500000,70.000000,2.000000
24.000000,4.000000,107.000000,90.000000,2430.000000,14.500000,70.000000,2.000000
25.000000,4.000000,104.000000,95.000000,2375.000000,17.500000,70.000000,2.000000
26.000000,4.000000,121.000000,113.000000,2234.000000,12.500000,70.000000,2.000000
21.000000,6.000000,199.000000,90.000000,2648.000000,15.000000,70.000000,1.000000
10.000000,8.000000,360.000000,215.000000,4615.000000,14.000000,70.000000,1.000000
10.000000,8.000000,307.000000,200.000000,4376.000000,15.000000,70.000000,1.000000
11.000000,8.000000,318.000000,210.000000,4382.000000,13.500000,70.000000,1.000000
9.000000,8.000000,304.000000,193.000000,4732.000000,18.500000,70.000000,1.000000
27.000000,4.000000,97.000000,88.000000,2130.000000,14.500000,71.000000,3.000000
28.000000,4.000000,140.000000,90.000000,2264.000000,15.500000,71.000000,1.000000
25.000000,4.000000,113.000000,95.000000,2228.000000,14.000000,71.000000,3.000000
19.000000,6.000000,232.000000,100.000000,2634.000000,13.000000,71.000000,1.000000
16.000000,6.000000,225.000000,105.000000,3439.000000,15.500000,71.000000,1.000000
17.000000,6.000000,250.000000,100.000000,3329.000000,15.500000,71.000000,1.000000
19.000000,6.000000,250.000000,88.000000,3302.000000,15.500000,71.000000,1.000000
18.000000,6.000000,232.000000,100.000000,3288.000000,15.500000,71.000000,1.000000
14.000000,8.000000,350.000000,165.000000,4209.000000,12.000000,71.000000,1.000000
14.000000,8.000000,400.000000,175.000000,4464.000000,11.500000,71.000000,1.000000
14.000000,8.000000,351.000000,153.000000,4154.000000,13.500000,71.000000,1.000000
14.000000,8.000000,318.000000,150.000000,4096.000000,13.000000,71.000000,1.000000
12.000000,8.000000,383.000000,180.000000,4955.000000,11.500000,71.000000,1.000000
13.000000,8.000000,400.000000,170.000000,4746.000000,12.000000,71.000000,1.000000
13.000000,8.000000,400.000000,175.000000,5140.000000,12.000000,71.000000,1.000000
18.000000,6.000000,258.000000,110.000000,2962.000000,13.500000,71.000000,1.000000
22.000000,4.000000,140.000000,72.000000,2408.000000,19.000000,71.000000,1.000000
19.000000,6.000000,250.000000,100.000000,3282.000000,15.000000,71.000000,1.000000
18.000000,6.000000,250.000000,88.000000,3139.000000,14.500000,71.000000,1.000000
23.000000,4.000000,122.000000,86.000000,2220.000000,14.000000,71.000000,1.000000
28.000000,4.000000,116.000000,90.000000,2123.000000,14.000000,71.000000,2.000000
30.000000,4.000000,79.000000,70.000000,2074.000000,19.500000,71.000000,2.000000
30.000000,4.000000,88.000000,76.000000,2065.000000,14.500000,71.000000,2.000000
31.000000,4.000000,71.000000,65.000000,1773.000000,19.000000,71.000000,3.000000
35.000000,4.000000,72.000000,69.000000,1613.000000,18.000000,71.000000,3.000000
27.000000,4.000000,97.000000,60.000000,1834.000000,19.000000,71.000000,2.000000
26.000000,4.000000,91.000000,70.000000,1955.000000,20.500000,71.000000,1.000000
24.000000,4.000000,113.000000,95.000000,2278.000000,15.500000,72.000000,3.000000
25.000000,4.000000,97.500000,80.000000,2126.000000,17.000000,72.000000,1.000000
23.000000,4.000000,97.000000,54.000000,2254.000000,23.500000,72.000000,2.000000
20.000000,4.000000,140.000000,90.000000,2408.000000,19.500000,72.000000,1.000000
21.000000,4.000000,122.000000,86.000000,2226.000000,16.500000,72.000000,1.000000
13.000000,8.000000,350.000000,165.000000,4274.000000,12.000000,72.000000,1.000000
14.000000,8.000000,400.000000,175.000000,4385.000000,12.000000,72.000000,1.000000
15.000000,8.000000,318.000000,150.000000,4135.000000,13.500000,72.000000,1.000000
14.000000,8.000000,351.000000,153.000000,4129.000000,13.000000,72.000000,1.000000
17.000000,8.000000,304.000000,150.000000,3672.000000,11.500000,72.000000,1.000000
11.000000,8.000000,429.000000,208.000000,4633.000000,11.000000,72.000000,1.000000
13.000000,8.000000,350.000000,155.000000,4502.000000,13.500000,72.000000,1.000000
12.000000,8.000000,350.000000,160.000000,4456.000000,13.500000,72.000000,1.000000
13.000000,8.000000,400.000000,190.000000,4422.000000,12.500000,72.000000,1.000000
19.000000,3.000000,70.000000,97.000000,2330.000000,13.500000,72.000000,3.000000
15.000000,8.000000,304.000000,150.000000,3892.000000,12.500000,72.000000,1.000000
13.000000,8.000000,307.000000,130.000000,4098.000000,14.000000,72.000000,1.000000
13.000000,8.000000,302.000000,140.000000,4294.000000,16.000000,72.000000,1.000000
14.000000,8.000000,318.000000,150.000000,4077.000000,14.000000,72.000000,1.000000
18.000000,4.000000,121.000000,112.000000,2933.000000,14.500000,72.000000,2.000000
22.000000,4.000000,121.000000,76.000000,2511.000000,18.000000,72.000000,2.000000
21.000000,4.000000,120.000000,87.000000,2979.000000,19.500000,72.000000,2.000000
26.000000,4.000000,96.000000,69.000000,2189.000000,18.000000,72.000000,2.000000
22.000000,4.000000,122.000000,86.000000,2395.000000,16.000000,72.000000,1.000000
28.000000,4.000000,97.000000,92.000000,2288.000000,17.000000,72.000000,3.000000
23.000000,4.000000,120.000000,97.000000,2506.000000,14.500000,72.000000,3.000000
28.000000,4.000000,98.000000,80.000000,2164.000000,15.000000,72.000000,1.000000
27.000000,4.000000,97.000000,88.000000,2100.000000,16.500000,72.000000,3.000000
13.000000,8.000000,350.000000,175.000000,4100.000000,13.000000,73.000000,1.000000
14.000000,8.000000,304.000000,150.000000,3672.000000,11.500000,73.000000,1.000000
13.000000,8.000000,350.000000,145.000000,3988.000000,13.000000,73.000000,1.000000
14.000000,8.000000,302.000000,137.000000,4042.000000,14.500000,73.000000,1.000000
15.000000,8.000000,318.000000,150.000000,3777.000000,12.500000,73.000000,1.000000
12.000000,8.000000,429.000000,198.000000,4952.000000,11.500000,73.000000,1.000000
13.000000,8.000000,400.000000,150.000000,4464.000000,12.000000,73.000000,1.000000
13.000000,8.000000,351.000000,158.000000,4363.000000,13.000000,73.000000,1.000000
14.000000,8.000000,318.000000,150.000000,4237.000000,14.500000,73.000000,1.000000
13.000000,8.000000,440.000000,215.000000,4735.000000,11.000000,73.000000,1.000000
12.000000,8.000000,455.000000,225.000000,4951.000000,11.000000,73.000000,1.000000
13.000000,8.000000,360.000000,175.000000,3821.000000,11.000000,73.000000,1.000000
18.000000,6.000000,225.000000,105.000000,3121.000000,16.500000,73.000000,1.000000
16.000000,6.000000,250.000000,100.000000,3278.000000,18.000000,73.000000,1.000000
18.000000,6.000000,232.000000,100.000000,2945.000000,16.000000,73.000000,1.000000
18.000000,6.000000,250.000000,88.000000,3021.000000,16.500000,73.000000,1.000000
23.000000,6.000000,198.000000,95.000000,2904.000000,16.000000,73.000000,1.000000
26.000000,4.000000,97.000000,46.000000,1950.000000,21.000000,73.000000,2.000000
11.000000,8.000000,400.000000,150.000000,4997.000000,14.000000,73.000000,1.000000
12.000000,8.000000,400.000000,167.000000,4906.000000,12.500000,73.000000,1.000000
13.000000,8.000000,360.000000,170.000000,4654.000000,13.000000,73.000000,1.000000
12.000000,8.000000,350.000000,180.000000,4499.000000,12.500000,73.000000,1.000000
18.000000,6.000000,232.000000,100.000000,2789.000000,15.000000,73.000000,1.000000
20.000000,4.000000,97.000000,88.000000,2279.000000,19.000000,73.000000,3.000000
21.000000,4.000000,140.000000,72.000000,2401.000000,19.500000,73.000000,1.000000
22.000000,4.000000,108.000000,94.000000,2379.000000,16.500000,73.000000,3.000000
18.000000,3.000000,70.000000,90.000000,2124.000000,13.500000,73.000000,3.000000
19.000000,4.000000,122.000000,85.000000,2310.000000,18.500000,73.000000,1.000000
21.000000,6.000000,155.000000,107.000000,2472.000000,14.000000,73.000000,1.000000
26.000000,4.000000,98.000000,90.000000,2265.000000,15.500000,73.000000,2.000000
15.000000,8.000000,350.000000,145.000000,4082.000000,13.000000,73.000000,1.000000
16.000000,8.000000,400.000000,230.000000,4278.000000,9.500000,73.000000,1.000000
29.000000,4.000000,68.000000,49.000000,1867.000000,19.500000,73.000000,2.000000
24.000000,4.000000,116.000000,75.000000,2158.000000,15.500000,73.000000,2.000000
20.000000,4.000000,114.000000,91.000000,2582.000000,14.000000,73.000000,2.000000
19.000000,4.000000,121.000000,112.000000,2868.000000,15.500000,73.000000,2.000000
15.000000,8.000000,318.000000,150.000000,3399.000000,11.000000,73.000000,1.000000
24.000000,4.000000,121.000000,110.000000,2660.000000,14.000000,73.000000,2.000000
20.000000,6.000000,156.000000,122.000000,2807.000000,13.500000,73.000000,3.000000
11.000000,8.000000,350.000000,180.000000,3664.000000,11.000000,73.000000,1.000000
20.000000,6.000000,198.000000,95.000000,3102.000000,16.500000,74.000000,1.000000
19.000000,6.000000,232.000000,100.000000,2901.000000,16.000000,74.000000,1.000000
15.000000,6.000000,250.000000,100.000000,3336.000000,17.000000,74.000000,1.000000
31.000000,4.000000,79.000000,67.000000,1950.000000,19.000000,74.000000,3.000000
26.000000,4.000000,122.000000,80.000000,2451.000000,16.500000,74.000000,1.000000
32.000000,4.000000,71.000000,65.000000,1836.000000,21.000000,74.000000,3.000000
25.000000,4.000000,140.000000,75.000000,2542.000000,17.000000,74.000000,1.000000
16.000000,6.000000,250.000000,100.000000,3781.000000,17.000000,74.000000,1.000000
16.000000,6.000000,258.000000,110.000000,3632.000000,18.000000,74.000000,1.000000
18.000000,6.000000,225.000000,105.000000,3613.000000,16.500000,74.000000,1.000000
16.000000,8.000000,302.000000,140.000000,4141.000000,14.000000,74.000000,1.000000
13.000000,8.000000,350.000000,150.000000,4699.000000,14.500000,74.000000,1.000000
14.000000,8.000000,318.000000,150.000000,4457.000000,13.500000,74.000000,1.000000
14.000000,8.000000,302.000000,140.000000,4638.000000,16.000000,74.000000,1.000000
14.000000,8.000000,304.000000,150.000000,4257.000000,15.500000,74.000000,1.000000
29.000000,4.000000,98.000000,83.000000,2219.000000,16.500000,74.000000,2.000000
26.000000,4.000000,79.000000,67.000000,1963.000000,15.500000,74.000000,2.000000
26.000000,4.000000,97.000000,78.000000,2300.000000,14.500000,74.000000,2.000000
31.000000,4.000000,76.000000,52.000000,1649.000000,16.500000,74.000000,3.000000
32.000000,4.000000,83.000000,61.000000,2003.000000,19.000000,74.000000,3.000000
28.000000,4.000000,90.000000,75.000000,2125.000000,14.500000,74.000000,1.000000
24.000000,4.000000,90.000000,75.000000,2108.000000,15.500000,74.000000,2.000000
26.000000,4.000000,116.000000,75.000000,2246.000000,14.000000,74.000000,2.000000
24.000000,4.000000,120.000000,97.000000,2489.000000,15.000000,74.000000,3.000000
26.000000,4.000000,108.000000,93.000000,2391.000000,15.500000,74.000000,3.000000
31.000000,4.000000,79.000000,67.000000,2000.000000,16.000000,74.000000,2.000000
19.000000,6.000000,225.000000,95.000000,3264.000000,16.000000,75.000000,1.000000
18.000000,6.000000,250.000000,105.000000,3459.000000,16.000000,75.000000,1.000000
15.000000,6.000000,250.000000,72.000000,3432.000000,21.000000,75.000000,1.000000
15.000000,6.000000,250.000000,72.000000,3158.000000,19.500000,75.000000,1.000000
16.000000,8.000000,400.000000,170.000000,4668.000000,11.500000,75.000000,1.000000
15.000000,8.000000,350.000000,145.000000,4440.000000,14.000000,75.000000,1.000000
16.000000,8.000000,318.000000,150.000000,4498.000000,14.500000,75.000000,1.000000
14.000000,8.000000,351.000000,148.000000,4657.000000,13.500000,75.000000,1.000000
17.000000,6.000000,231.000000,110.000000,3907.000000,21.000000,75.000000,1.000000
16.000000,6.000000,250.000000,105.000000,3897.000000,18.500000,75.000000,1.000000
15.000000,6.000000,258.000000,110.000000,3730.000000,19.000000,75.000000,1.000000
18.000000,6.000000,225.000000,95.000000,3785.000000,19.000000,75.000000,1.000000
21.000000,6.000000,231.000000,110.000000,3039.000000,15.000000,75.000000,1.000000
20.000000,8.000000,262.000000,110.000000,3221.000000,13.500000,75.000000,1.000000
13.000000,8.000000,302.000000,129.000000,3169.000000,12.000000,75.000000,1.000000
29.000000,4.000000,97.000000,75.000000,2171.000000,16.000000,75.000000,3.000000
23.000000,4.000000,140.000000,83.000000,2639.000000,17.000000,75.000000,1.000000
20.000000,6.000000,232.000000,100.000000,2914.000000,16.000000,75.000000,1.000000
23.000000,4.000000,140.000000,78.000000,2592.000000,18.500000,75.000000,1.000000
24.000000,4.000000,134.000000,96.000000,2702.000000,13.500000,75.000000,3.000000
25.000000,4.000000,90.000000,71.000000,2223.000000,16.500000,75.000000,2.000000
24.000000,4.000000,119.000000,97.000000,2545.000000,17.000000,75.000000,3.000000
18.000000,6.000000,171.000000,97.000000,2984.000000,14.500000,75.000000,1.000000
29.000000,4.000000,90.000000,70.000000,1937.000000,14.000000,75.000000,2.000000
19.000000,6.000000,232.000000,90.000000,3211.000000,17.000000,75.000000,1.000000
23.000000,4.000000,115.000000,95.000000,2694.000000,15.000000,75.000000,2.000000
23.000000,4.000000,120.000000,88.000000,2957.000000,17.000000,75.000000,2.000000
22.000000,4.000000,121.000000,98.000000,2945.000000,14.500000,75.000000,2.000000
25.000000,4.000000,121.000000,115.000000,2671.000000,13.500000,75.000000,2.000000
33.000000,4.000000,91.000000,53.000000,1795.000000,17.500000,75.000000,3.000000
28.000000,4.000000,107.000000,86.000000,2464.000000,15.500000,76.000000,2.000000
25.000000,4.000000,116.000000,81.000000,2220.000000,16.900000,76.000000,2.000000
25.000000,4.000000,140.000000,92.000000,2572.000000,14.900000,76.000000,1.000000
26.000000,4.000000,98.000000,79.000000,2255.000000,17.700000,76.000000,1.000000
27.000000,4.000000,101.000000,83.000000,2202.000000,15.300000,76.000000,2.000000
17.500000,8.000000,305.000000,140.000000,4215.000000,13.000000,76.000000,1.000000
16.000000,8.000000,318.000000,150.000000,4190.000000,13.000000,76.000000,1.000000
15.500000,8.000000,304.000000,120.000000,3962.000000,13.900000,76.000000,1.000000
14.500000,8.000000,351.000000,152.000000,4215.000000,12.800000,76.000000,1.000000
22.000000,6.000000,225.000000,100.000000,3233.000000,15.400000,76.000000,1.000000
22.000000,6.000000,250.000000,105.000000,3353.000000,14.500000,76.000000,1.000000
24.000000,6.000000,200.000000,81.000000,3012.000000,17.600000,76.000000,1.000000
22.500000,6.000000,232.000000,90.000000,3085.000000,17.600000,76.000000,1.000000
29.000000,4.000000,85.000000,52.000000,2035.000000,22.200000,76.000000,1.000000
24.500000,4.000000,98.000000,60.000000,2164.000000,22.100000,76.000000,1.000000
29.000000,4.000000,90.000000,70.000000,1937.000000,14.200000,76.000000,2.000000
33.000000,4.000000,91.000000,53.000000,1795.000000,17.400000,76.000000,3.000000
20.000000,6.000000,225.000000,100.000000,3651.000000,17.700000,76.000000,1.000000
18.000000,6.000000,250.000000,78.000000,3574.000000,21.000000,76.000000,1.000000
18.500000,6.000000,250.000000,110.000000,3645.000000,16.200000,76.000000,1.000000
17.500000,6.000000,258.000000,95.000000,3193.000000,17.800000,76.000000,1.000000
29.500000,4.000000,97.000000,71.000000,1825.000000,12.200000,76.000000,2.000000
32.000000,4.000000,85.000000,70.000000,1990.000000,17.000000,76.000000,3.000000
28.000000,4.000000,97.000000,75.000000,2155.000000,16.400000,76.000000,3.000000
26.500000,4.000000,140.000000,72.000000,2565.000000,13.600000,76.000000,1.000000
20.000000,4.000000,130.000000,102.000000,3150.000000,15.700000,76.000000,2.000000
13.000000,8.000000,318.000000,150.000000,3940.000000,13.200000,76.000000,1.000000
19.000000,4.000000,120.000000,88.000000,3270.000000,21.900000,76.000000,2.000000
19.000000,6.000000,156.000000,108.000000,2930.000000,15.500000,76.000000,3.000000
16.500000,6.000000,168.000000,120.000000,3820.000000,16.700000,76.000000,2.000000
16.500000,8.000000,350.000000,180.000000,4380.000000,12.100000,76.000000,1.000000
13.000000,8.000000,350.000000,145.000000,4055.000000,12.000000,76.000000,1.000000
13.000000,8.000000,302.000000,130.000000,3870.000000,15.000000,76.000000,1.000000
13.000000,8.000000,318.000000,150.000000,3755.000000,14.000000,76.000000,1.000000
31.500000,4.000000,98.000000,68.000000,2045.000000,18.500000,77.000000,3.000000
30.000000,4.000000,111.000000,80.000000,2155.000000,14.800000,77.000000,1.000000
36.000000,4.000000,79.000000,58.000000,1825.000000,18.600000,77.000000,2.000000
25.500000,4.000000,122.000000,96.000000,2300.000000,15.500000,77.000000,1.000000
33.500000,4.000000,85.000000,70.000000,1945.000000,16.800000,77.000000,3.000000
17.500000,8.000000,305.000000,145.000000,3880.000000,12.500000,77.000000,1.000000
17.000000,8.000000,260.000000,110.000000,4060.000000,19.000000,77.000000,1.000000
15.500000,8.000000,318.000000,145.000000,4140.000000,13.700000,77.000000,1.000000
15.000000,8.000000,302.000000,130.000000,4295.000000,14.900000,77.000000,1.000000
17.500000,6.000000,250.000000,110.000000,3520.000000,16.400000,77.000000,1.000000
20.500000,6.000000,231.000000,105.000000,3425.000000,16.900000,77.000000,1.000000
19.000000,6.000000,225.000000,100.000000,3630.000000,17.700000,77.000000,1.000000
18.500000,6.000000,250.000000,98.000000,3525.000000,19.000000,77.000000,1.000000
16.000000,8.000000,400.000000,180.000000,4220.000000,11.100000,77.000000,1.000000
15.500000,8.000000,350.000000,170.000000,4165.000000,11.400000,77.000000,1.000000
15.500000,8.000000,400.000000,190.000000,4325.000000,12.200000,77.000000,1.000000
16.000000,8.000000,351.000000,149.000000,4335.000000,14.500000,77.000000,1.000000
29.000000,4.000000,97.000000,78.000000,1940.000000,14.500000,77.000000,2.000000
24.500000,4.000000,151.000000,88.000000,2740.000000,16.000000,77.000000,1.000000
26.000000,4.000000,97.000000,75.000000,2265.000000,18.200000,77.000000,3.000000
25.500000,4.000000,140.000000,89.000000,2755.000000,15.800000,77.000000,1.000000
30.500000,4.000000,98.000000,63.000000,2051.000000,17.000000,77.000000,1.000000
33.500000,4.000000,98.000000,83.000000,2075.000000,15.900000,77.000000,1.000000
30.000000,4.000000,97.000000,67.000000,1985.000000,16.400000,77.000000,3.000000
30.500000,4.000000,97.000000,78.000000,2190.000000,14.100000,77.000000,2.000000
22.000000,6.000000,146.000000,97.000000,2815.000000,14.500000,77.000000,3.000000
21.500000,4.000000,121.000000,110.000000,2600.000000,12.800000,77.000000,2.000000
21.500000,3.000000,80.000000,110.000000,2720.000000,13.500000,77.000000,3.000000
43.100000,4.000000,90.000000,48.000000,1985.000000,21.500000,78.000000,2.000000
36.100000,4.000000,98.000000,66.000000,1800.000000,14.400000,78.000000,1.000000
32.800000,4.000000,78.000000,52.000000,1985.000000,19.400000,78.000000,3.000000
39.400000,4.000000,85.000000,70.000000,2070.000000,18.600000,78.000000,3.000000
36.100000,4.000000,91.000000,60.000000,1800.000000,16.400000,78.000000,3.000000
19.900000,8.000000,260.000000,110.000000,3365.000000,15.500000,78.000000,1.000000

Grazie mille per la risposta dettagliata e il tempo impiegato a scrivere questo. Ho bisogno di un po 'di tempo per digerire questo, e ti risponderò con commenti / domande! Grazie ancora!
dev stanco e annoiato il

Combinando la tua e la risposta di Sengiley con ciò che ho capito, posso dire: la regressione nell'apprendimento profondo ha 1. 3+ numero di livelli nascosti; 2. La funzione di attivazione è lineare (o la funzione di attivazione dell'identità); 3. La funzione di perdita che ottimizziamo è un errore quadratico medio nel livello di output. Grazie!
dev stanco e annoiato il

2

Per la regressione, che per l'apprendimento profondo non è lineare nella maggior parte dei casi, lo strato finale ha 1 neurone con funzione di identità e funzione di perdita che ottimizziamo è MSE, MAE invece di entropia binaria o categorica usata per la classificazione.


Ehi grazie! Spero di non chiedere troppo, ma potresti indicarmi l'implementazione di carta / algoritmo? Ho provato a cercare, ma soprattutto ho trovato cose relative alla regressione logistica :(
dev stanco e annoiato il
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.