Perché la regressione lineare e ANOVA forniscono valori diversi nel caso in cui si consideri l'interazione tra variabili?


22

Stavo cercando di adattare i dati di una serie storica (senza repliche) utilizzando il modello di regressione. I dati si presentano come segue:

> xx.2
          value time treat
    1  8.788269    1     0
    2  7.964719    6     0
    3  8.204051   12     0
    4  9.041368   24     0
    5  8.181555   48     0
    6  8.041419   96     0
    7  7.992336  144     0
    8  7.948658    1     1
    9  8.090211    6     1
    10 8.031459   12     1
    11 8.118308   24     1
    12 7.699051   48     1
    13 7.537120   96     1
    14 7.268570  144     1

A causa della mancanza di repliche, considero il tempo come variabile continua. La colonna "cura" mostra rispettivamente i dati di caso e controllo.

Innanzitutto, inserisco il modello "value = time * treat" con "lm" in R:

summary(lm(value~time*treat,data=xx.2))

Call:
lm(formula = value ~ time * treat, data = xx.2)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.50627 -0.12345  0.00296  0.04124  0.63785 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  8.493476   0.156345  54.325 1.08e-13 ***
time        -0.003748   0.002277  -1.646   0.1307    
treat       -0.411271   0.221106  -1.860   0.0925 .  
time:treat  -0.001938   0.003220  -0.602   0.5606    

Il valore del tempo e del trattamento non è significativo.

Mentre con anova, ho ottenuto risultati diversi:

 summary(aov(value~time*treat,data=xx.2))
            Df Sum Sq Mean Sq F value Pr(>F)  
time         1 0.7726  0.7726   8.586 0.0150 *
treat        1 0.8852  0.8852   9.837 0.0106 *
time:treat   1 0.0326  0.0326   0.362 0.5606  
Residuals   10 0.8998  0.0900                 

Il valore per tempo e trattamento è cambiato.

Con regressione lineare, se ho ragione, significa che il tempo e il trattamento non hanno un'influenza significativa sul valore, ma con ANOVA, significa che il tempo e il trattamento hanno un'influenza significativa sul valore.

Qualcuno potrebbe spiegarmi perché c'è differenza tra questi due metodi e quale usare?


3
Potresti cercare i diversi tipi di somme di quadrati. In particolare, credo che la regressione lineare restituisca la somma dei quadrati di tipo III, mentre l'anova restituisce un tipo diverso.
assunto

3
Se si salvano i risultati di lme aovsi può verificare che producano adattamenti identici; ad esempio, confrontare i loro residui con la residualsfunzione o esaminare i loro coefficienti (lo $coefficientsslot in entrambi i casi).
whuber

Risposte:


18

L'adattamento per lm () e aov () sono identici ma il reporting è diverso. I test t sono l'impatto marginale delle variabili in questione, data la presenza di tutte le altre variabili. I test F sono sequenziali - quindi verificano l'importanza del tempo in presenza di nient'altro che l'intercettazione, del trattamento in presenza di nient'altro che dell'intercettazione e del tempo, e dell'interazione in presenza di tutto quanto sopra.

Supponendo che tu sia interessato al significato del trattamento, ti suggerisco di adattare due modelli, uno con e uno senza, confrontando i due mettendo entrambi i modelli in anova () e usando quel test F. Questo testerà contemporaneamente il trattamento e l'interazione.

Considera quanto segue:

> xx.2 <- as.data.frame(matrix(c(8.788269, 1, 0,
+ 7.964719, 6, 0,
+ 8.204051, 12, 0,
+ 9.041368, 24, 0,
+ 8.181555, 48, 0,
+ 8.041419, 96, 0,
+ 7.992336, 144, 0,
+ 7.948658, 1, 1,
+ 8.090211, 6, 1,
+ 8.031459, 12, 1,
+ 8.118308, 24, 1,
+ 7.699051, 48, 1,
+ 7.537120, 96, 1,
+ 7.268570, 144, 1), byrow=T, ncol=3))
> names(xx.2) <- c("value", "time", "treat")
> 
> mod1 <- lm(value~time*treat, data=xx.2)
> anova(mod1)
Analysis of Variance Table

Response: value
           Df  Sum Sq Mean Sq F value  Pr(>F)  
time        1 0.77259 0.77259  8.5858 0.01504 *
treat       1 0.88520 0.88520  9.8372 0.01057 *
time:treat  1 0.03260 0.03260  0.3623 0.56064  
Residuals  10 0.89985 0.08998                  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> mod2 <- aov(value~time*treat, data=xx.2)
> anova(mod2)
Analysis of Variance Table

Response: value
           Df  Sum Sq Mean Sq F value  Pr(>F)  
time        1 0.77259 0.77259  8.5858 0.01504 *
treat       1 0.88520 0.88520  9.8372 0.01057 *
time:treat  1 0.03260 0.03260  0.3623 0.56064  
Residuals  10 0.89985 0.08998                  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> summary(mod2)
            Df Sum Sq Mean Sq F value Pr(>F)  
time         1 0.7726  0.7726   8.586 0.0150 *
treat        1 0.8852  0.8852   9.837 0.0106 *
time:treat   1 0.0326  0.0326   0.362 0.5606  
Residuals   10 0.8998  0.0900                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> summary(mod1)

Call:
lm(formula = value ~ time * treat, data = xx.2)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.50627 -0.12345  0.00296  0.04124  0.63785 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  8.493476   0.156345  54.325 1.08e-13 ***
time        -0.003748   0.002277  -1.646   0.1307    
treat       -0.411271   0.221106  -1.860   0.0925 .  
time:treat  -0.001938   0.003220  -0.602   0.5606    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 

Residual standard error: 0.3 on 10 degrees of freedom
Multiple R-squared: 0.6526,     Adjusted R-squared: 0.5484 
F-statistic: 6.262 on 3 and 10 DF,  p-value: 0.01154 

Grazie per la spiegazione approfondita, mi ricorda l'ANCOVA (analisi della covarianza). Il primo passo di ANCOVA è testare l'interazione tra fattore categorico e covariata per vedere se hanno una pendenza identica per entrambe le condizioni. È abbastanza simile a quello che ho fatto qui. In ANCOVA, fornisce lo stesso valore per l'interazione in t-test e F-test poiché l'interazione è l'ultimo termine in aov.
shao,


2

Le due risposte precedenti sono fantastiche, ma ho pensato di aggiungere un po 'di più. Un altro insieme di informazioni può essere raccolto da qui .

Quando si riportano i lm()risultati con il termine di interazione, si dice qualcosa del tipo: "il trattamento 1 è diverso dal trattamento 0 (beta! = 0, p = 0,0925), quando il tempo è impostato sul valore base di 1 ". Considerando che i anova()risultati ( come accennato in precedenza ) ignorano qualsiasi altra variabile e si preoccupa solo di differenze di varianza.

Puoi dimostrarlo rimuovendo il termine di interazione e utilizzando un modello semplice con solo due effetti principali ( m1 ):

> m1 = lm(value~time+treat,data=dat)
> summary(m1)

Call:
lm(formula = value ~ time + treat, data = dat)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.54627 -0.10533 -0.04574  0.11975  0.61528 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  8.539293   0.132545  64.426 1.56e-15 ***
time        -0.004717   0.001562  -3.019  0.01168 *  
treat       -0.502906   0.155626  -3.232  0.00799 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2911 on 11 degrees of freedom
Multiple R-squared:   0.64, Adjusted R-squared:  0.5746 
F-statistic: 9.778 on 2 and 11 DF,  p-value: 0.003627

> anova(m1)
Analysis of Variance Table

Response: value
          Df  Sum Sq Mean Sq F value   Pr(>F)   
time       1 0.77259 0.77259  9.1142 0.011677 * 
treat      1 0.88520 0.88520 10.4426 0.007994 **
Residuals 11 0.93245 0.08477                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In questo caso vediamo che i valori p riportati sono gli stessi; questo perché nel caso di questo modello più semplice,


Questa risposta purtroppo sembra incompiuta. Ancora +1 per il collegamento e per menzionare che l'effetto è dovuto a diversi schemi di codifica.
ameba dice Reinstate Monica il

2
Si dovrebbe anche aggiungere questo summary(lm)e anova(lm)non daremo sempre risultati identici se non c'è un termine di interazione. Accade così che in questi dati timee treatsiano ortogonali e quindi le somme dei quadrati di tipo I (sequenziali) e III (marginali) producono risultati identici.
ameba dice Reinstate Monica il

2
  • La differenza ha a che fare con i confronti a coppie di tipo dei modelli a cascata.
  • Inoltre, la funzione aov () ha un problema con il modo in cui sceglie i gradi di libertà. Sembra mescolare due concetti: 1) la somma dei quadrati dai confronti graduali, 2) i gradi di libertà da un quadro generale.

RIPRODUZIONE DEL PROBLEMA

> data <- list(value = c (8.788269,7.964719,8.204051,9.041368,8.181555,8.0414149,7.992336,7.948658,8.090211,8.031459,8.118308,7.699051,7.537120,7.268570), time = c(1,6,12,24,48,96,144,1,6,12,24,48,96,144), treat = c(0,0,0,0,0,0,0,1,1,1,1,1,1,1) )
> summary( lm(value ~ treat*time, data=data) )
> summary( aov(value ~ 1 + treat + time + I(treat*time),data=data) )

ALCUNI MODELLI UTILIZZATI NELLA SPIEGAZIONE

#all linear models used in the explanation below
> model_0                      <- lm(value ~ 1, data)
> model_time                   <- lm(value ~ 1 + time, data)
> model_treat                  <- lm(value ~ 1 + treat, data)
> model_interaction            <- lm(value ~ 1 + I(treat*time), data)
> model_treat_time             <- lm(value ~ 1 + treat + time, data)
> model_treat_interaction      <- lm(value ~ 1 + treat + I(treat*time), data)
> model_time_interaction       <- lm(value ~ 1 + time + I(treat*time), data)
> model_treat_time_interaction <- lm(value ~ 1 + time + treat + I(treat*time), data)

COME FUNZIONA LM T_TEST E È IN CORSO DI F-TEST

# the t-test with the estimator and it's variance, mean square error, is
# related to the F test of pairwise comparison of models by dropping 1
# model parameter

> anova(model_treat_time_interaction, model_time_interaction)

Analysis of Variance Table

Model 1: value ~ 1 + time + treat + I(treat * time)
Model 2: value ~ 1 + time + I(treat * time)
  Res.Df     RSS Df Sum of Sq      F  Pr(>F)  
1     10 0.89985                              
2     11 1.21118 -1  -0.31133 3.4598 0.09251 .
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1

> anova(model_treat_time_interaction, model_treat_interaction)

Analysis of Variance Table

Model 1: value ~ 1 + time + treat + I(treat * time)
Model 2: value ~ 1 + treat + I(treat * time)
  Res.Df     RSS Df Sum of Sq      F Pr(>F)
1     10 0.89985                           
2     11 1.14374 -1   -0.2439 2.7104 0.1307

> anova(model_treat_time_interaction, model_treat_time)

Analysis of Variance Table

Model 1: value ~ 1 + time + treat + I(treat * time)
Model 2: value ~ 1 + treat + time
  Res.Df     RSS Df Sum of Sq      F Pr(>F)
1     10 0.89985                           
2     11 0.93245 -1 -0.032599 0.3623 0.5606

> # which is the same as
> drop1(model_treat_time_interaction, scope  = ~time+treat+I(treat*time), test="F")

Single term deletions

Model:
value ~ 1 + time + treat + I(treat * time)
                Df Sum of Sq     RSS     AIC F value  Pr(>F)  
<none>                       0.89985 -30.424                  
time             1  0.243896 1.14374 -29.067  2.7104 0.13072  
treat            1  0.311333 1.21118 -28.264  3.4598 0.09251 .
I(treat * time)  1  0.032599 0.93245 -31.926  0.3623 0.56064  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1

COME FUNZIONA AOV E SCEGLIE DF IN F-TEST

> #the aov function makes stepwise additions/drops
> 
> #first the time, then treat, then the interaction
> anova(model_0, model_time)

Analysis of Variance Table

Model 1: value ~ 1
Model 2: value ~ 1 + time
  Res.Df    RSS Df Sum of Sq      F  Pr(>F)  
1     13 2.5902                              
2     12 1.8176  1    0.7726 5.1006 0.04333 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1

> anova(model_time, model_treat_time)

Analysis of Variance Table

Model 1: value ~ 1 + time
Model 2: value ~ 1 + treat + time
  Res.Df     RSS Df Sum of Sq      F   Pr(>F)   
1     12 1.81764                                
2     11 0.93245  1    0.8852 10.443 0.007994 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1

> anova(model_treat_time, model_treat_time_interaction)

Analysis of Variance Table

Model 1: value ~ 1 + treat + time
Model 2: value ~ 1 + time + treat + I(treat * time)
  Res.Df     RSS Df Sum of Sq      F Pr(>F)
1     11 0.93245                           
2     10 0.89985  1  0.032599 0.3623 0.5606

> 
> # note that the sum of squares for within model variation is the same
> # but the F values and p-values are not the same because the aov 
> # function somehow chooses to use the degrees of freedom in the 
> # complete model in all stepwise changes
>

NOTA IMPORTANTE

> # Although the p and F values do not exactly match, it is this effect
> # of order and selection of cascading or not in model comparisons. 
> # An important note to make is that the comparisons are made by 
> # stepwise additions and changing the order of variables has an 
> # influence on the outcome!
>
> # Additional note changing the order of 'treat' and 'time' has no 
> # effect because they are not correlated

> summary( aov(value ~ 1 + treat + time +I(treat*time), data=data) )

        Df Sum Sq Mean Sq F value Pr(>F)  
treat            1 0.8852  0.8852   9.837 0.0106 *
time             1 0.7726  0.7726   8.586 0.0150 *
I(treat * time)  1 0.0326  0.0326   0.362 0.5606  
Residuals       10 0.8998  0.0900                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1

> summary( aov(value ~ 1 + I(treat*time) + treat + time, data=data) )

                Df Sum Sq Mean Sq F value  Pr(>F)   
I(treat * time)  1 1.3144  1.3144  14.606 0.00336 **
treat            1 0.1321  0.1321   1.469 0.25343   
time             1 0.2439  0.2439   2.710 0.13072   
Residuals       10 0.8998  0.0900                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1

> # This is an often forgotten quirck 
> # best is to use manual comparisons such that you know
> # and understand your hypotheses
> # (which is often forgotten in the click and
> #     point anova modelling tools)
> #
> # anova(model1, model2) 
> #     or use 
> # stepAIC from the MASS library
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.