Risposte:
Ti stai sbagliando. Le spline hanno una rappresentazione lineare usando covariate derivate. Ad esempio, una tendenza quadratica non è lineare, ma può essere modellata in un modello lineare prendendo: , quindi vengono inseriti e il suo quadrato in un modello lineare. X
La spline può essere semplicemente vista come una parametrizzazione sofisticata di una o più covariate valutate in modo continuo o pseudo-continuo.
splines
e l'esecuzione bs(...)
consente di creare una rappresentazione lineare di una spline con un grado polinomiale e punti nodo specificati dall'utente.
@La risposta di AdamO è corretta, in quanto gli adattamenti basati su spline possono certamente essere fatti nel framework GLM standard. Ciò non significa che i GAM siano solo un caso speciale dei GLM! Mentre ci sono una serie di modelli esattamente identici e che possono essere inquadrati sia come GAM che come GLM con un'espansione spline delle covariate, ci sono alcuni modelli GAM che non sono disponibili nel framework GLM standard.
Ad esempio, si potrebbe adattare un modello GAM usando una spline di livellamento per ciascuna delle covariate. Ciò comporta sostanzialmente un'espansione spline delle variabili, ma con una penalità sui secondi derivati. Ciò si traduce in un modello leggermente al di fuori del framework GLM standard.
Inoltre, viene spesso considerata una procedura standard ed è integrata nella maggior parte delle librerie GAM, per adattarsi ai parametri di livellamento (ad es. Gradi di libertà della spline, ecc.) Ottimizzando varie misure di errori fuori campione, mentre la formulazione GLM in genere considera lo spazio covariato fisso.
glm
funzione di R , a differenza di quando si utilizzano spline cubiche standard con un glm.