Voglio capire meglio i pacchetti R Lars
e Glmnet
, che sono usati per risolvere il problema Lazo:
(per Variabili e campioni, vedi www.stanford.edu/~hastie/Papers/glmnet.pdf a pagina 3)pN
Pertanto, li ho applicati entrambi sullo stesso set di dati giocattolo. Sfortunatamente, i due metodi non forniscono le stesse soluzioni per lo stesso input di dati. Qualcuno ha idea da dove provenga la differenza?
Ho ottenuto i risultati come segue: Dopo aver generato alcuni dati (8 campioni, 12 funzioni, disegno di Toeplitz, tutto centrato), ho calcolato l'intero percorso del Lazo usando Lars. Quindi, ho eseguito Glmnet usando la sequenza di lambda calcolata da Lars (moltiplicata per 0,5) e speravo di ottenere la stessa soluzione, ma non l'ho fatto.
Si può vedere che le soluzioni sono simili. Ma come posso spiegare le differenze? Si prega di trovare il mio codice qui sotto. C'è una domanda correlata qui: GLMNET o LARS per il calcolo delle soluzioni LASSO? , ma non contiene la risposta alla mia domanda.
Impostare:
# Load packages.
library(lars)
library(glmnet)
library(MASS)
# Set parameters.
nb.features <- 12
nb.samples <- 8
nb.relevant.indices <- 3
snr <- 1
nb.lambdas <- 10
# Create data, not really important.
sigma <- matrix(0, nb.features, nb.features)
for (i in (1:nb.features)) {
for (j in (1:nb.features)) {
sigma[i, j] <- 0.99 ^ (abs(i - j))
}
}
x <- mvrnorm(n=nb.samples, rep(0, nb.features), sigma, tol=1e-6, empirical=FALSE)
relevant.indices <- sample(1:nb.features, nb.relevant.indices, replace=FALSE)
x <- scale(x)
beta <- rep(0, times=nb.features)
beta[relevant.indices] <- runif(nb.relevant.indices, 0, 1)
epsilon <- matrix(rnorm(nb.samples),nb.samples, 1)
simulated.snr <-(norm(x %*% beta, type="F")) / (norm(epsilon, type="F"))
epsilon <- epsilon * (simulated.snr / snr)
y <- x %*% beta + epsilon
y <- scale(y)
LARS:
la <- lars(x, y, intercept=TRUE, max.steps=1000, use.Gram=FALSE)
co.lars <- as.matrix(coef(la, mode="lambda"))
print(round(co.lars, 4))
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
# [1,] 0.0000 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
# [2,] 0.0000 0 0 0.0000 0.0000 0.1735 0.0000 0.0000 0.0000 0.0000
# [3,] 0.0000 0 0 0.2503 0.0000 0.4238 0.0000 0.0000 0.0000 0.0000
# [4,] 0.0000 0 0 0.1383 0.0000 0.7578 0.0000 0.0000 0.0000 0.0000
# [5,] -0.1175 0 0 0.2532 0.0000 0.8506 0.0000 0.0000 0.0000 0.0000
# [6,] -0.3502 0 0 0.2676 0.3068 0.9935 0.0000 0.0000 0.0000 0.0000
# [7,] -0.4579 0 0 0.6270 0.0000 0.9436 0.0000 0.0000 0.0000 0.0000
# [8,] -0.7848 0 0 0.9970 0.0000 0.9856 0.0000 0.0000 0.0000 0.0000
# [9,] -0.3175 0 0 0.0000 0.0000 3.4488 0.0000 0.0000 -2.1714 0.0000
# [10,] -0.4842 0 0 0.0000 0.0000 4.7731 0.0000 0.0000 -3.4102 0.0000
# [11,] -0.4685 0 0 0.0000 0.0000 4.7958 0.0000 0.1191 -3.6243 0.0000
# [12,] -0.4364 0 0 0.0000 0.0000 5.0424 0.0000 0.3007 -4.0694 -0.4903
# [13,] -0.4373 0 0 0.0000 0.0000 5.0535 0.0000 0.3213 -4.1012 -0.4996
# [14,] -0.4525 0 0 0.0000 0.0000 5.6876 -1.5467 1.5095 -4.7207 0.0000
# [15,] -0.4593 0 0 0.0000 0.0000 5.7355 -1.6242 1.5684 -4.7440 0.0000
# [16,] -0.4490 0 0 0.0000 0.0000 5.8601 -1.8485 1.7767 -4.9291 0.0000
# [,11] [,12]
# [1,] 0.0000 0.0000
# [2,] 0.0000 0.0000
# [3,] 0.0000 0.0000
# [4,] -0.2279 0.0000
# [5,] -0.3266 0.0000
# [6,] -0.5791 0.0000
# [7,] -0.6724 0.2001
# [8,] -1.0207 0.4462
# [9,] -0.4912 0.1635
# [10,] -0.5562 0.2958
# [11,] -0.5267 0.3274
# [12,] 0.0000 0.2858
# [13,] 0.0000 0.2964
# [14,] 0.0000 0.1570
# [15,] 0.0000 0.1571
glmnet con lambda = (lambda_lars / 2):
glm2 <- glmnet(x, y, family="gaussian", lambda=(0.5 * la$lambda), thresh=1e-16)
co.glm2 <- as.matrix(t(coef(glm2, mode="lambda")))
print(round(co.glm2, 4))
# (Intercept) V1 V2 V3 V4 V5 V6 V7 V8 V9
# s0 0 0.0000 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
# s1 0 0.0000 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
# s2 0 0.0000 0 0 0.2385 0.0000 0.4120 0.0000 0.0000 0.0000
# s3 0 0.0000 0 0 0.2441 0.0000 0.4176 0.0000 0.0000 0.0000
# s4 0 0.0000 0 0 0.2466 0.0000 0.4200 0.0000 0.0000 0.0000
# s5 0 0.0000 0 0 0.2275 0.0000 0.4919 0.0000 0.0000 0.0000
# s6 0 0.0000 0 0 0.1868 0.0000 0.6132 0.0000 0.0000 0.0000
# s7 0 -0.2651 0 0 0.2623 0.1946 0.9413 0.0000 0.0000 0.0000
# s8 0 -0.6609 0 0 0.7328 0.0000 1.6384 0.0000 0.0000 -0.5755
# s9 0 -0.4633 0 0 0.0000 0.0000 4.6069 0.0000 0.0000 -3.2547
# s10 0 -0.4819 0 0 0.0000 0.0000 4.7546 0.0000 0.0000 -3.3929
# s11 0 -0.4767 0 0 0.0000 0.0000 4.7839 0.0000 0.0567 -3.5122
# s12 0 -0.4715 0 0 0.0000 0.0000 4.7915 0.0000 0.0965 -3.5836
# s13 0 -0.4510 0 0 0.0000 0.0000 5.6237 -1.3909 1.3898 -4.6583
# s14 0 -0.4552 0 0 0.0000 0.0000 5.7064 -1.5771 1.5326 -4.7298
# V10 V11 V12
# s0 0.0000 0.0000 0.0000
# s1 0.0000 0.0000 0.0000
# s2 0.0000 0.0000 0.0000
# s3 0.0000 0.0000 0.0000
# s4 0.0000 0.0000 0.0000
# s5 0.0000 -0.0464 0.0000
# s6 0.0000 -0.1293 0.0000
# s7 0.0000 -0.4868 0.0000
# s8 0.0000 -0.8803 0.3712
# s9 0.0000 -0.5481 0.2792
# s10 0.0000 -0.5553 0.2939
# s11 0.0000 -0.5422 0.3108
# s12 0.0000 -0.5323 0.3214
# s13 -0.0503 0.0000 0.1711
# s14 0.0000 0.0000 0.1571