Differenza tra regressione binomiale, binomiale negativa e di Poisson


27

Sto cercando alcune informazioni sulla differenza tra la regressione binomiale, binomiale negativa e di Poisson e per quali situazioni si adattano meglio queste regressioni.

Ci sono dei test che posso eseguire in SPSS che possono dirmi quale di queste regressioni è la migliore per la mia situazione?

Inoltre, come posso eseguire un binomio Poisson o negativo in SPSS, poiché non ci sono opzioni come posso vedere nella parte di regressione?

Se hai qualche link utile lo apprezzerei molto.

Risposte:


40

Solo la natura dei tuoi dati e la tua domanda di interesse possono dirti quale di queste regressioni è la migliore per la tua situazione. Quindi non ci sono test che ti diranno quale di questi metodi è il migliore per te. (Fare clic sui collegamenti dei metodi di regressione di seguito per vedere alcuni esempi funzionanti in SPSS.)

Ricorda che la distribuzione di Poisson presuppone che media e varianza siano uguali. A volte, i tuoi dati mostrano variazioni extra maggiori della media. Questa situazione è chiamata overdispersion e la regressione binomiale negativa è più flessibile al riguardo rispetto alla regressione di Poisson (in quel caso si potrebbe ancora usare la regressione di Poisson ma gli errori standard potrebbero essere distorti). La distribuzione binomiale negativa ha un parametro in più rispetto alla regressione di Poisson che regola la varianza indipendentemente dalla media. In effetti, la distribuzione di Poisson è un caso speciale della distribuzione binomiale negativa.


16

È troppo lungo per essere un commento, quindi lo farò una risposta.

La distinzione tra binomio da un lato e Poisson e binomio negativo dall'altro è nella natura dei dati; i test sono irrilevanti.

Esistono miti diffusi sui requisiti per la regressione di Poisson. La varianza uguale alla media è caratteristica di un Poisson, ma la regressione di Poisson non richiede quella della risposta, né che la distribuzione marginale della risposta sia Poisson, più che la regressione classica richiede che sia normale (gaussiana).

La presenza di errori standard dubbi non è fatale, anche perché è possibile ottenere stime migliori degli errori standard in implementazioni decenti della regressione di Poisson.

Né Poisson richiede assolutamente di contare la risposta. Funziona spesso bene con variabili continue non negative. Per ulteriori informazioni sulla sottovalutazione (gioco di parole previsto) di Poisson, vedere

http://blog.stata.com/tag/poisson-regression/

e i suoi riferimenti. Il contenuto di Stata di quel post di blog non dovrebbe impedirne l'interesse e l'utilizzo per le persone che non usano Stata.

È difficile consigliare bene la scelta tra Poisson e regressione binomiale negativa. Vedi se la regressione di Poisson fa un buon lavoro; altrimenti considera la maggiore complicazione della regressione binomiale negativa.

Non posso consigliare di utilizzare SPSS. Non mi sorprenderebbe se fosse necessario utilizzare altri software per l'implementazione flessibile di Poisson o la regressione binomiale negativa.


Per quanto riguarda i miti sui requisiti: dire "regressione di Poisson" significa "usare la stessa funzione di punteggio della GLM di Poisson in un approccio di equazione di stima per ottenere stime puntuali per coefficienti e stimatori sandwich per i loro errori standard" è molto probabile radice di qualsiasi confusione. Dopotutto, OLS non viene chiamato regressione gaussiana. Sfortunatamente "regressione quasi-Poisson con robusti errori standard" è il nome più conciso che mi viene in mente.
Scortchi - Ripristina Monica

1
Concordato. Chiunque legga i miei articoli probabilmente noterà molta enfasi sul potere dei nomi nel bene e nel male; è bene riavere alcuni dei miei consigli.
Nick Cox,

2

In SPSS Statistics, il comando GENLIN gestisce Poisson, binomio negativo e molti altri. (Analizza> Modelli lineari generalizzati). Fa parte dell'opzione Statistiche avanzate.


0

Il binomio Poisson / Negativo può anche essere usato con un risultato binario con offset uguale a uno. Naturalmente è necessario che i dati provengano da un progetto futuro (coorte, rct, ecc.). La regressione di Poisson o NB fornisce la misura di effetto più appropriata (IRR) rispetto al rapporto di probabilità dalla regressione logistica.

NB La regressione è "più sicura" da eseguire rispetto alla regressione di Poisson perché anche se il parametro di sovradispersione (alpha in Stata) non è statisticamente significativo, i risultati saranno esattamente gli stessi della sua forma di regressione di Poisson.

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.