Sto semplicemente cercando di ricalcolare con dnorm () la verosimiglianza log fornita dalla funzione logLik da un modello lm (in R).
Funziona (quasi perfettamente) per un elevato numero di dati (ad es. N = 1000):
> n <- 1000
> x <- 1:n
> set.seed(1)
> y <- 10 + 2*x + rnorm(n, 0, 2)
> mod <- glm(y ~ x, family = gaussian)
> logLik(mod)
'log Lik.' -2145.562 (df=3)
> sigma <- sqrt(summary(mod)$dispersion)
> sum(log(dnorm(x = y, mean = predict(mod), sd = sigma)))
[1] -2145.563
> sum(log(dnorm(x = resid(mod), mean = 0, sd = sigma)))
[1] -2145.563
ma per piccoli set di dati ci sono chiare differenze:
> n <- 5
> x <- 1:n
> set.seed(1)
> y <- 10 + 2*x + rnorm(n, 0, 2)
>
> mod <- glm(y ~ x, family = gaussian)
> logLik(mod)
'log Lik.' -8.915768 (df=3)
> sigma <- sqrt(summary(mod)$dispersion)
> sum(log(dnorm(x = y, mean = predict(mod), sd = sigma)))
[1] -9.192832
> sum(log(dnorm(x = resid(mod), mean = 0, sd = sigma)))
[1] -9.192832
A causa del piccolo effetto del set di dati ho pensato che potesse essere dovuto alle differenze nelle stime di varianza residua tra lm e glm, ma l'uso di lm fornisce lo stesso risultato di glm:
> modlm <- lm(y ~ x)
> logLik(modlm)
'log Lik.' -8.915768 (df=3)
>
> sigma <- summary(modlm)$sigma
> sum(log(dnorm(x = y, mean = predict(modlm), sd = sigma)))
[1] -9.192832
> sum(log(dnorm(x = resid(modlm), mean = 0, sd = sigma)))
[1] -9.192832
Dove sbaglio?
stats:::logLik.glm
lm()
, stai usando invece di . σ