Se è misurabile, allora
vale per -a bis . In particolare, se è indipendente da , allora
vale per -a bis .g
P(g(X,Z)∈A∣X=x)=P(g(x,Z)∈A∣X=x),A∈B(R)
PXxZXP(g(X,Z)∈A∣X=x)=P(g(x,Z)∈A),A∈B(R)
PXx
Ciò si basa sul seguente risultato generale:
Se e sono variabili casuali e indica una probabilità condizionale regolare di dato , ovvero , quindi
U,TSPS(⋅∣T=t)ST=tPS(A∣T=t)=P(S∈A∣T=t)
E[U∣T=t]=∫RE[U∣T=t,S=s]PS(ds∣T=t).(*)
Prova : la definizione di una probabilità condizionale regolare assicura che
per misurabile e integrabile . Ora lasciate per qualche insieme Borel set . Quindi
con
Dal momento che
E[ψ(S,T)]=∫R∫Rψ(s,t)PS(ds∣T=t)PT(dt)
ψψ(s,t)=1B(t)E[U∣S=s,T=t]B∫T−1(B)UdP=E[1B(T)U]=E[1B(T)E[U∣S,T]]=E[ψ(S,T)]=∫R∫Rψ(s,t)PS(ds∣T=t)PT(dt)=∫Bφ(t)PT(dt)
φ(t)=∫RE[U∣T=t,S=s]PS(ds∣T=t).
Bera arbitrario concludiamo che .
φ(t)=E[U∣T=t]
Ora, lascia e usa con , dove e , . Quindi notiamo che
per definizione di aspettativa condizionale e quindi per abbiamo
A∈B(R)(∗)U=ψ(X,Z)ψ(x,z)=1g−1(A)(x,z)S=ZT=X
E[U∣X=x,Z=z]=E[ψ(X,Y)∣X=x,Z=z]=ψ(x,z)
(∗)P(g(X,Z)∈A∣X=x)=E[U∣X=x]=∫Rψ(x,z)PZ(dz∣X=x)=P(g(x,Z)∈A∣X=x).