definizioni
Funzione Euler Phi ( funzione totient AKA ): una funzione che accetta un numero positivo e restituisce il numero di numeri positivi inferiore al numero dato che sono co-primi con un determinato numero. È indicato come
φ(n)
.Numero raggiungibile : se esiste un numero intero positivo
x
taleφ(x) == n
, alloran
è raggiungibile .
Compito
Scrivi una funzione / programma per determinare se un dato intero positivo è raggiungibile.
Ingresso
Un numero positivo, in qualsiasi formato ragionevole. Si può presumere che il numero rientri nelle capacità della lingua. L'input unario è accettato.
Produzione
Due valori coerenti, uno per i numeri raggiungibili e l'altro per i numeri non raggiungibili. I due valori possono essere qualsiasi cosa, purché siano coerenti.
Casi test
I seguenti numeri 100
sono:
1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96
( A002202 su OEIS)
Regole
Si applicano scappatoie standard .
Criterio vincente
Questo è code-golf . Vince con il conteggio di byte più basso.
Riferimenti
phi(n) = count { m : 1 <= m <= n AND (m,n) are coprime }
.. è vero?