?::`}:("(!@
perfect:
{:{:;%"}
+puts; "
}zero: "
}else{(:
"negI" _~
""""""{{{"!@
I caratteri latini perfect puts zero else neg I
sono in realtà solo commenti *.
cioè se l'ingresso è perfetto 0
viene stampato a, altrimenti lo -1
è.
Provalo online!
* quindi anche questo o questo lavoro ...
?::`}:("(!@ ?::`}:("(!@
: BEWARE :
{:{:;%"} {:{:;%"}
+ ; " +LAIR; "
} : " } OF : "
} {(: }MINO{(:
" " _~ "TAUR" _~
""""""{{{"!@ """"""{{{"!@
Come?
Prende come input un numero intero positivo n
e posiziona una variabile di accumulatore -n
sullo stack ausiliario, quindi esegue un test di divisibilità per ciascun numero intero da n-1
e verso compreso 1
, aggiungendo quelli che si dividono n
nell'accumulatore. Una volta che questo è completo se la variabile dell'accumulatore è diversa da zero -1
viene emesso un a, altrimenti un 0
è.
L' ?::`}:(
viene eseguito solo una volta, all'inizio dell'esecuzione:
?::`}:( Main,Aux
? - take an integer from STDIN and place it onto Main [[n],[]]
: - duplicate top of Main [[n,n],[]]
: - duplicate top of Main [[n,n,n],[]]
` - negate top of Main [[n,n,-n],[]]
} - place top of Main onto Aux [[n,n],[-n]]
: - duplicate top of Main [[n,n,n],[-n]]
( - decrement top of Main [[n,n,n-1],[-n]]
L'istruzione successiva "
, è una no-op, ma abbiamo tre istruzioni vicine quindi ci ramifichiamo in base al valore nella parte superiore di Main, zero ci porta in avanti, mentre lo zero ci porta a destra.
Se l'input è stato 1
andiamo avanti perché la parte superiore di Main è zero:
(!@ Main,Aux
( - decrement top of Main [[1,1,-1],[-1]]
! - print top of Main, a -1
@ - exit the labyrinth
Ma se l'input era maggiore di 1
giriamo a destra perché la parte superiore di Main è diversa da zero:
:} Main,Aux
: - duplicate top of Main [[n,n,n-1,n-1],[-n]]
} - place top of Main onto Aux [[n,n,n-1],[-n,n-1]]
A questo punto abbiamo un ramo di tre vicini, ma sappiamo che n-1
è diverso da zero, quindi giriamo a destra ...
"% Main,Aux
" - no-op [[n,n,n-1],[-n,n-1]]
% - place modulo result onto Main [[n,n%(n-1)],[-n,n-1]]
- ...i.e we've got our first divisibility indicator n%(n-1), an
- accumulator, a=-n, and our potential divisor p=n-1:
- [[n,n%(n-1)],[a,p]]
Ora siamo in un'altra filiale di tre vicini a %
.
Se il risultato è %
stato diverso da zero, andiamo a sinistra per diminuire il nostro potenziale divisore p=p-1
e lasciamo l'accumulatore a
, così com'è:
;:{(:""}" Main,Aux
; - drop top of Main [[n],[a,p]]
: - duplicate top of Main [[n,n],[a,p]]
{ - place top of Aux onto Main [[n,n,p],[a]]
- three-neighbour branch but n-1 is non-zero so we turn left
( - decrement top of Main [[n,n,p-1],[a]]
: - duplicate top of Main [[n,n,p-1,p-1],[a]]
"" - no-ops [[n,n,p-1,p-1],[a]]
} - place top of Main onto Aux [[n,n,p-1],[a,p-1]]
" - no-op [[n,n,p-1],[a,p-1]]
% - place modulo result onto Main [[n,n%(p-1)],[a,p-1]]
- ...and we branch again according to the divisibility
- of n by our new potential divisor, p-1
... ma se il risultato di %
era zero (per il primo passaggio solo quando n=2
) passiamo direttamente a ENTRAMBE aggiungiamo il divisore al nostro accumulatore a=a+p
e diminuiamo il nostro potenziale divisore p=p-1
:
;:{:{+}}""""""""{(:""} Main,Aux
; - drop top of Main [[n],[a,p]]
: - duplicate top of Main [[n,n],[a,p]]
{ - place top of Aux onto Main [[n,n,p],[a]]
: - duplicate top of Main [[n,n,p,p],[a]]
{ - place top of Aux onto Main [[n,n,p,p,a],[]]
+ - perform addition [[n,n,p,a+p],[]]
} - place top of Main onto Aux [[n,n,p],[a+p]]
} - place top of Main onto Aux [[n,n],[a+p,p]]
""""""" - no-ops [[n,n],[a+p,p]]
- a branch, but n is non-zero so we turn left
" - no-op [[n,n],[a+p,p]]
{ - place top of Aux onto Main [[n,n,p],[a+p]]
- we branch, but p is non-zero so we turn right
( - decrement top of Main [[n,n,p-1],[a+p]]
: - duplicate top of Main [[n,n,p-1,p-1],[a+p]]
"" - no-ops [[n,n,p-1,p-1],[a+p]]
} - place top of Main onto Aux [[n,n,p-1],[a+p,p-1]]
A questo punto se p-1
è ancora diverso da zero giriamo a sinistra:
"% Main,Aux
" - no-op [[n,n,p-1],[a+p,p-1]]
% - modulo [[n,n%(p-1)],[a+p,p-1]]
- ...and we branch again according to the divisibility
- of n by our new potential divisor, p-1
... ma se p-1
colpisci zero andiamo dritti fino alla :
seconda riga del labirinto (hai già visto tutte le istruzioni prima, quindi sto lasciando fuori le loro descrizioni e sto solo dando il loro effetto):
:":}"":({):""}"%;:{:{+}}"""""""{{{ Main,Aux
: - [[n,n,0,0],[a,0]]
" - [[n,n,0,0],[a,0]]
- top of Main is zero so we go straight
- ...but we hit the wall and so turn around
: - [[n,n,0,0,0],[a,0]]
} - [[n,n,0,0],[a,0,0]]
- top of Main is zero so we go straight
"" - [[n,n,0,0],[a,0,0]]
: - [[n,n,0,0,0],[a,0,0]]
( - [[n,n,0,0,-1],[a,0,0]]
{ - [[n,n,0,0,-1,0],[a,0]]
- top of Main is zero so we go straight
- ...but we hit the wall and so turn around
( - [[n,n,0,0,-1,-1],[a,0]]
: - [[n,n,0,0,-1,-1,-1],[a,0]]
"" - [[n,n,0,0,-1,-1,-1],[a,0]]
} - [[n,n,0,0,-1,-1],[a,0,-1]]
- top of Main is non-zero so we turn left
" - [[n,n,0,0,-1,-1],[a,0,-1]]
% - (-1)%(-1)=0 [[n,n,0,0,0],[a,0,-1]]
; - [[n,n,0,0],[a,0,-1]]
: - [[n,n,0,0,0],[a,0,-1]]
{ - [[n,n,0,0,0,-1],[a,0]]
: - [[n,n,0,0,0,-1,-1],[a,0]]
{ - [[n,n,0,0,0,-1,-1,0],[a]]
+ - [[n,n,0,0,0,-1,-1],[a]]
} - [[n,n,0,0,0,-1],[a,-1]]
} - [[n,n,0,0,0],[a,-1,-1]]
""""""" - [[n,n,0,0,0],[a,-1,-1]]
- top of Main is zero so we go straight
{ - [[n,n,0,0,0,-1],[a,-1]]
{ - [[n,n,0,0,0,-1,-1],[a]]
{ - [[n,n,0,0,0,-1,-1,a],[]]
Ora ci {
sono tre istruzioni vicine, quindi ...
... se a
è zero, che sarà perfetto n
, allora andiamo dritti:
"!@ Main,Aux
" - [[n,n,0,0,0,-1,-1,a],[]]
- top of Main is a, which is zero, so we go straight
! - print top of Main, which is a, which is a 0
@ - exit the labyrinth
... se a
è diverso da zero, che sarà per non perfetto n
, allora giriamo a sinistra:
_~"!@ Main,Aux
_ - place a zero onto Main [[n,n,0,0,0,-1,-1,a,0],[]]
~ - bitwise NOT top of Main (=-1-x) [[n,n,0,0,0,-1,-1,a,-1],[]]
" - [[n,n,0,0,0,-1,-1,a,-1],[]]
- top of Main is NEGATIVE so we turn left
! - print top of Main, which is -1
@ - exit the labyrinth