Fortran 90
Utilizzo il CORDIC metodo con un array di pre-tabulato di 60 valori arctan (vedere l'articolo Wiki per dettagli sul perché questo è necessario).
Questo codice richiede un file, trig.in
con tutti i valori su newline da archiviare nella stessa cartella dell'eseguibile Fortran. Compilando questo è,
gfortran -O3 -o file file.f90
dove si file
trova qualunque nome di file gli dai (probabilmente SinCosTan.f90
sarebbe più semplice, anche se non è necessario abbinare il nome del programma e il nome del file). Se si dispone del compilatore Intel, si consiglia di utilizzare
ifort -O3 -xHost -o file file.f90
poiché -xHost
(che non esiste per gfortran) fornisce ottimizzazioni di livello superiore disponibili per il tuo processore.
I miei test mi hanno dato circa 10 microsecondi per calcolo quando ho testato 1000 angoli casuali usando gfortran 4.4 (4.7 o 4.8 è disponibile nei repository Ubuntu) e circa 9.5 microsecondi usando ifort 12.1. Testare solo 10 angoli casuali comporterà un tempo indeterminabile usando le routine di Fortran, poiché la routine di temporizzazione è accurata al millisecondo e la matematica semplice dice che dovrebbero essere necessari 0.100 millisecondi per eseguire tutti i 10 numeri.
EDIT Apparentemente stavo sincronizzando IO che (a) ha reso i tempi più lunghi del necessario e (b) è contrario al punto 6. Ho aggiornato il codice per riflettere questo. Ho anche scoperto che l'uso di un kind=8
numero intero con la subroutine intrinseca system_clock
offre una precisione dei microsecondi.
Con questo codice aggiornato, sto ora calcolando ogni serie di valori delle funzioni trigonometriche in circa 0,3 microsecondi (le cifre significative alla fine variano da corsa a corsa, ma si aggira costantemente intorno a 0,31 noi), una riduzione significativa rispetto alla precedente iterazione che ha cronometrato IO.
program SinCosTan
implicit none
integer, parameter :: real64 = selected_real_kind(15,307)
real(real64), parameter :: PI = 3.1415926535897932384626433832795028842
real(real64), parameter :: TAU = 6.2831853071795864769252867665590057684
real(real64), parameter :: half = 0.500000000000000000000_real64
real(real64), allocatable :: trigs(:,:), angles(:)
real(real64) :: time(2), times, b
character(len=12) :: tout
integer :: i,j,ierr,amax
integer(kind=8) :: cnt(2)
open(unit=10,file='trig.out',status='replace')
open(unit=12,file='CodeGolf/trig.in',status='old')
! check to see how many angles there are
i=0
do
read(12,*,iostat=ierr) b
if(ierr/=0) exit
i=i+1
enddo !-
print '(a,i0,a)',"There are ",i," angles"
amax = i
! allocate array
allocate(trigs(3,amax),angles(amax))
! rewind the file then read the angles into the array
rewind(12)
do i=1,amax
read(12,*) angles(i)
enddo !- i
! compute trig functions & time it
times = 0.0_real64
call system_clock(cnt(1)) ! <-- system_clock with an 8-bit INT can time to us
do i=1,amax
call CORDIC(angles(i), trigs(:,i), 40)
enddo !- i
call system_clock(cnt(2))
times = times + (cnt(2) - cnt(1))
! write the angles to the file
do i=1,amax
do j=1,3
if(trigs(j,i) > 1d100) then
write(tout,'(a1)') 'n'
elseif(abs(trigs(j,i)) > 1.0) then
write(tout,'(f10.6)') trigs(j,i)
elseif(abs(trigs(j,i)) < 0.1) then
write(tout,'(f10.8)') trigs(j,i)
else
write(tout,'(f9.7)') trigs(j,i)
endif
write(10,'(a)',advance='no') tout
enddo !- j
write(10,*)" "
enddo !- i
print *,"computation took",times/real(i,real64),"us per angle"
close(10); close(12)
contains
!> @brief compute sine/cosine/tangent
subroutine CORDIC(a,t,n)
real(real64), intent(in) :: a
real(real64), intent(inout) :: t(3)
integer, intent(in) :: n
! local variables
real(real64), parameter :: deg2rad = 1.745329252e-2
real(real64), parameter :: angles(60) = &
[ 7.8539816339744830962e-01_real64, 4.6364760900080611621e-01_real64, &
2.4497866312686415417e-01_real64, 1.2435499454676143503e-01_real64, &
6.2418809995957348474e-02_real64, 3.1239833430268276254e-02_real64, &
1.5623728620476830803e-02_real64, 7.8123410601011112965e-03_real64, &
3.9062301319669718276e-03_real64, 1.9531225164788186851e-03_real64, &
9.7656218955931943040e-04_real64, 4.8828121119489827547e-04_real64, &
2.4414062014936176402e-04_real64, 1.2207031189367020424e-04_real64, &
6.1035156174208775022e-05_real64, 3.0517578115526096862e-05_real64, &
1.5258789061315762107e-05_real64, 7.6293945311019702634e-06_real64, &
3.8146972656064962829e-06_real64, 1.9073486328101870354e-06_real64, &
9.5367431640596087942e-07_real64, 4.7683715820308885993e-07_real64, &
2.3841857910155798249e-07_real64, 1.1920928955078068531e-07_real64, &
5.9604644775390554414e-08_real64, 2.9802322387695303677e-08_real64, &
1.4901161193847655147e-08_real64, 7.4505805969238279871e-09_real64, &
3.7252902984619140453e-09_real64, 1.8626451492309570291e-09_real64, &
9.3132257461547851536e-10_real64, 4.6566128730773925778e-10_real64, &
2.3283064365386962890e-10_real64, 1.1641532182693481445e-10_real64, &
5.8207660913467407226e-11_real64, 2.9103830456733703613e-11_real64, &
1.4551915228366851807e-11_real64, 7.2759576141834259033e-12_real64, &
3.6379788070917129517e-12_real64, 1.8189894035458564758e-12_real64, &
9.0949470177292823792e-13_real64, 4.5474735088646411896e-13_real64, &
2.2737367544323205948e-13_real64, 1.1368683772161602974e-13_real64, &
5.6843418860808014870e-14_real64, 2.8421709430404007435e-14_real64, &
1.4210854715202003717e-14_real64, 7.1054273576010018587e-15_real64, &
3.5527136788005009294e-15_real64, 1.7763568394002504647e-15_real64, &
8.8817841970012523234e-16_real64, 4.4408920985006261617e-16_real64, &
2.2204460492503130808e-16_real64, 1.1102230246251565404e-16_real64, &
5.5511151231257827021e-17_real64, 2.7755575615628913511e-17_real64, &
1.3877787807814456755e-17_real64, 6.9388939039072283776e-18_real64, &
3.4694469519536141888e-18_real64, 1.7347234759768070944e-18_real64]
real(real64), parameter :: kvalues(33) = &
[ 0.70710678118654752440e+00_real64, 0.63245553203367586640e+00_real64, &
0.61357199107789634961e+00_real64, 0.60883391251775242102e+00_real64, &
0.60764825625616820093e+00_real64, 0.60735177014129595905e+00_real64, &
0.60727764409352599905e+00_real64, 0.60725911229889273006e+00_real64, &
0.60725447933256232972e+00_real64, 0.60725332108987516334e+00_real64, &
0.60725303152913433540e+00_real64, 0.60725295913894481363e+00_real64, &
0.60725294104139716351e+00_real64, 0.60725293651701023413e+00_real64, &
0.60725293538591350073e+00_real64, 0.60725293510313931731e+00_real64, &
0.60725293503244577146e+00_real64, 0.60725293501477238499e+00_real64, &
0.60725293501035403837e+00_real64, 0.60725293500924945172e+00_real64, &
0.60725293500897330506e+00_real64, 0.60725293500890426839e+00_real64, &
0.60725293500888700922e+00_real64, 0.60725293500888269443e+00_real64, &
0.60725293500888161574e+00_real64, 0.60725293500888134606e+00_real64, &
0.60725293500888127864e+00_real64, 0.60725293500888126179e+00_real64, &
0.60725293500888125757e+00_real64, 0.60725293500888125652e+00_real64, &
0.60725293500888125626e+00_real64, 0.60725293500888125619e+00_real64, &
0.60725293500888125617e+00_real64 ]
real(real64) :: beta, c, c2, factor, poweroftwo, s
real(real64) :: s2, sigma, sign_factor, theta, angle
integer :: j
! scale to radians
beta = a*deg2rad
! ensure angle is shifted to appropriate range
call angleShift(beta, -PI, theta)
! check for signs
if( theta < -half*PI) then
theta = theta + PI
sign_factor = -1.0_real64
else if( half*PI < theta) then
theta = theta - PI
sign_factor = -1.0_real64
else
sign_factor = +1.0_real64
endif
! set up some initializations...
c = 1.0_real64
s = 0.0_real64
poweroftwo = 1.0_real64
angle = angles(1)
! run for 30 iterations (should be good enough, need testing)
do j=1,n
sigma = merge(-1.0_real64, +1.0_real64, theta < 0.0_real64)
factor = sigma*poweroftwo
c2 = c - factor*s
s2 = factor*c + s
c = c2
s = s2
! update remaining angle
theta = theta - sigma*angle
poweroftwo = poweroftwo*0.5_real64
if(j+1 > 60) then
angle = angle * 0.5_real64
else
angle = angles(j+1)
endif
enddo !- j
if(n > 0) then
c = c*Kvalues(min(n,33))
s = s*Kvalues(min(n,33))
endif
c = c*sign_factor
s = s*sign_factor
t = [s, c, s/c]
end subroutine CORDIC
subroutine angleShift(alpha, beta, gamma)
real(real64), intent(in) :: alpha, beta
real(real64), intent(out) :: gamma
if(alpha < beta) then
gamma = beta - mod(beta - alpha, TAU) + TAU
else
gamma = beta + mod(alpha - beta, TAU)
endif
end subroutine angleShift
end program SinCosTan