Ispirato da questa domanda Math.SE .
A partire da 1te puoi eseguire ripetutamente una delle due seguenti operazioni:
Raddoppia il numero.
o
Riorganizza le sue cifre nel modo desiderato, tranne per il fatto che non devono esserci zero iniziali.
Prendendo un esempio dal post Math.SE collegato, possiamo raggiungere 1000i seguenti passi:
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 125, 250, 500, 1000
Quali numeri puoi raggiungere con questo processo e qual è la soluzione più breve?
La sfida
Dato un numero intero positivo N, determinare la sequenza più breve possibile di numeri interi da raggiungere Ncon il processo sopra, se possibile. Se esistono diverse soluzioni ottimali, emetterne una qualsiasi. Se tale sequenza non esiste, è necessario generare un elenco vuoto.
La sequenza può essere in qualsiasi stringa o formato elenco conveniente, non ambiguo.
È possibile scrivere un programma o una funzione, prendendo l'input tramite STDIN (o l'alternativa più vicina), l'argomento della riga di comando o l'argomento della funzione e producendo il risultato tramite STDOUT (o l'alternativa più vicina), il valore di ritorno della funzione o il parametro della funzione (out).
Questo è il golf del codice, quindi vince la risposta più breve (in byte).
Casi test
Ecco un elenco di tutti i numeri raggiungibili fino a 256 inclusi. La prima colonna è il numero (il tuo input), la seconda colonna è il numero ottimale di passaggi (che puoi usare per verificare la validità della tua soluzione) e la terza colonna è una sequenza ottimale per arrivarci:
1 1 {1}
2 2 {1,2}
4 3 {1,2,4}
8 4 {1,2,4,8}
16 5 {1,2,4,8,16}
23 7 {1,2,4,8,16,32,23}
29 10 {1,2,4,8,16,32,23,46,92,29}
32 6 {1,2,4,8,16,32}
46 8 {1,2,4,8,16,32,23,46}
58 11 {1,2,4,8,16,32,23,46,92,29,58}
61 6 {1,2,4,8,16,61}
64 7 {1,2,4,8,16,32,64}
85 12 {1,2,4,8,16,32,23,46,92,29,58,85}
92 9 {1,2,4,8,16,32,23,46,92}
104 15 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,104}
106 14 {1,2,4,8,16,32,64,128,256,265,530,305,610,106}
107 14 {1,2,4,8,16,32,23,46,92,29,58,85,170,107}
109 18 {1,2,4,8,16,32,23,46,92,184,368,386,772,277,554,455,910,109}
116 12 {1,2,4,8,16,32,23,46,92,29,58,116}
122 7 {1,2,4,8,16,61,122}
124 16 {1,2,4,8,16,32,23,46,92,29,58,85,170,107,214,124}
125 11 {1,2,4,8,16,32,64,128,256,512,125}
128 8 {1,2,4,8,16,32,64,128}
136 18 {1,2,4,8,16,32,23,46,92,184,148,296,592,259,518,158,316,136}
140 15 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,140}
142 16 {1,2,4,8,16,32,23,46,92,29,58,85,170,107,214,142}
145 17 {1,2,4,8,16,32,23,46,92,184,368,736,376,752,257,514,145}
146 18 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,104,208,416,146}
148 11 {1,2,4,8,16,32,23,46,92,184,148}
149 16 {1,2,4,8,16,32,64,128,182,364,728,287,574,457,914,149}
152 11 {1,2,4,8,16,32,64,128,256,512,152}
154 17 {1,2,4,8,16,32,23,46,92,184,368,736,376,752,257,514,154}
158 16 {1,2,4,8,16,32,23,46,92,184,148,296,592,259,518,158}
160 14 {1,2,4,8,16,32,64,128,256,265,530,305,610,160}
161 13 {1,2,4,8,16,32,23,46,92,29,58,116,161}
163 18 {1,2,4,8,16,32,23,46,92,184,148,296,592,259,518,158,316,163}
164 18 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,104,208,416,164}
166 20 {1,2,4,8,16,32,23,46,92,184,368,736,376,752,257,514,154,308,616,166}
167 17 {1,2,4,8,16,32,23,46,92,184,148,296,269,538,358,716,167}
169 23 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,104,208,416,461,922,229,458,916,169}
170 13 {1,2,4,8,16,32,23,46,92,29,58,85,170}
176 17 {1,2,4,8,16,32,23,46,92,184,148,296,269,538,358,716,176}
182 9 {1,2,4,8,16,32,64,128,182}
184 10 {1,2,4,8,16,32,23,46,92,184}
185 16 {1,2,4,8,16,32,23,46,92,184,148,296,592,259,518,185}
188 23 {1,2,4,8,16,32,23,46,92,184,148,296,592,259,518,185,370,740,470,940,409,818,188}
190 18 {1,2,4,8,16,32,23,46,92,184,368,386,772,277,554,455,910,190}
194 16 {1,2,4,8,16,32,64,128,182,364,728,287,574,457,914,194}
196 23 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,104,208,416,461,922,229,458,916,196}
203 16 {1,2,4,8,16,32,64,128,256,265,530,305,610,160,320,203}
205 13 {1,2,4,8,16,32,64,128,256,512,125,250,205}
208 16 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,104,208}
209 19 {1,2,4,8,16,32,23,46,92,184,368,736,376,752,257,514,145,290,209}
212 8 {1,2,4,8,16,61,122,212}
214 15 {1,2,4,8,16,32,23,46,92,29,58,85,170,107,214}
215 11 {1,2,4,8,16,32,64,128,256,512,215}
218 9 {1,2,4,8,16,32,64,128,218}
221 8 {1,2,4,8,16,61,122,221}
223 14 {1,2,4,8,16,32,23,46,92,29,58,116,232,223}
227 20 {1,2,4,8,16,32,23,46,92,184,148,296,592,259,518,158,316,361,722,227}
229 20 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,104,208,416,461,922,229}
230 16 {1,2,4,8,16,32,64,128,256,265,530,305,610,160,320,230}
232 13 {1,2,4,8,16,32,23,46,92,29,58,116,232}
233 22 {1,2,4,8,16,32,23,46,92,184,368,736,376,752,257,514,154,308,616,166,332,233}
235 19 {1,2,4,8,16,32,23,46,92,184,148,296,269,538,358,716,176,352,235}
236 19 {1,2,4,8,16,32,23,46,92,184,148,296,592,259,518,158,316,632,236}
238 19 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,104,208,416,832,238}
239 25 {1,2,4,8,16,32,23,46,92,184,368,736,376,752,257,514,154,308,616,166,332,233,466,932,239}
241 16 {1,2,4,8,16,32,23,46,92,29,58,85,170,107,214,241}
244 8 {1,2,4,8,16,61,122,244}
247 21 {1,2,4,8,16,32,23,46,92,184,148,296,592,259,518,158,316,632,362,724,247}
248 17 {1,2,4,8,16,32,23,46,92,29,58,85,170,107,214,124,248}
250 12 {1,2,4,8,16,32,64,128,256,512,125,250}
251 11 {1,2,4,8,16,32,64,128,256,512,251}
253 19 {1,2,4,8,16,32,23,46,92,184,148,296,269,538,358,716,176,352,253}
256 9 {1,2,4,8,16,32,64,128,256}
Se desideri ancora più dati di test, ecco la stessa tabella fino a 1.000 inclusi .
Qualsiasi numero che non appare in queste tabelle dovrebbe produrre un elenco vuoto (a condizione che il numero sia compreso nell'intervallo della tabella).