Sequenza della catena di somma


16

Sequenza:

  1. Iniziamo alle 1.
  2. Per prima cosa aggiungiamo l'attuale valore 1-indicizzato al numero precedente nella sequenza.
  3. Quindi applichiamo le seguenti operazioni matematiche in ordine se si applicano a questo valore corrente:
    • Divisibile per 2? => Aggiunta
    • Divisibile per 3 ? => Sottrazione
    • Divisibile per 4? => (Aggiunta E) Moltiplica
    • Non divisibile per né 2, 34? -> Continua con il risultato della somma corrente

Produzione:

Stampa i primi 100 numeri in questa sequenza:

1, 1, 21, 25, 30, 216, 223, 223, 2169, 2179, 2190, 2202, 2215, 2215, 2245, 2261, 2295, 2295, 2333, 2353, 2395, 2417, 56649, 56649, 56699, 56725, 1533033, 1533061, 1533090, 45993600, 45993631, 45993631, 1517792001, 1517792035, 1517792070, 1517792106, 1517792143, 1517792143, 1517792221, 1517792261, 1517792343, 1517792343, 1517792429, 1517792473, 1517792563, 1517792609, 71336257041, 71336257041, 71336257139, 71336257189, 3638149121841, 3638149121893, 3638149121946, 196460052588000, 196460052588055, 196460052588055, 11198222997525633, 11198222997525691, 11198222997525750, 11198222997525810, 11198222997525871, 11198222997525871, 11198222997525997, 11198222997526061, 11198222997526191, 11198222997526191, 11198222997526325, 11198222997526393, 11198222997526531, 11198222997526601, 795073832824398753, 795073832824398753, 795073832824398899, 795073832824398973, 59630537461829934225, 59630537461829934301, 59630537461829934378, 4651181922022734887568, 4651181922022734887647, 4651181922022734887647, 376745735683841525912529, 376745735683841525912611, 376745735683841525912694, 376745735683841525912778, 376745735683841525912863, 376745735683841525912863, 376745735683841525913037, 376745735683841525913125, 376745735683841525913303, 376745735683841525913303, 376745735683841525913485, 376745735683841525913577, 376745735683841525913763, 376745735683841525913857, 35790844889964944961834465, 35790844889964944961834465, 35790844889964944961834659, 35790844889964944961834757, 3543293644106529551221660545, 3543293644106529551221660645

Ecco i primi 10 numeri nella sequenza con spiegazione:

// Starting number of the sequence:
1

// 1 (previous number in the sequence)
// + 2 (current index in 1-indexed sequence)
// = 3 -> 3 - 2 (3 is divisible by 3, so we subtract the current index 2)
// = 1
1

// 1 (previous number in the sequence)
// + 3 (current index in 1-indexed sequence)
// = 4 -> 4 + 3 (4 is divisible by 2, so we first add the current index 3)
// = 7 -> 7 * 3 (and 4 is also divisible by 4, so we then also multiply the current index 3)
// = 21
21

// 21 (previous number in the sequence)
// + 4 (current index in 1-indexed sequence)
// = 25 (25 is not divisible by 2, 3 nor 4)
25

// 25 (previous number in the sequence)
// + 5 (current index in 1-indexed sequence)
// = 30 -> 30 + 5 (30 is divisible by 2, so we first add the current index 5)
// = 35 -> 35 - 5 (and 30 is also divisible by 3, so we then also subtract the current index 5)
// = 30
30

// 30 (previous number in the sequence)
// + 6 (current index in 1-indexed sequence)
// = 36 -> 36 + 6 (36 is divisible by 2, so we first add the current index 6)
// = 42 -> 42 - 6 (and 36 is also divisible by 3, so we then also subtract the current index 6)
// = 36 -> 36 * 6 (and 36 is also divisible by 4, so we then also multiply the current index 6)
// = 216
216

// 216 (previous number in the sequence)
// + 7 (current index in 1-indexed sequence)
// = 223 (223 is not divisible by 2, 3 nor 4)
223

// 223 (previous number in the sequence)
// + 8 (current index in 1-indexed sequence)
// = 231 -> 231 - 8 (231 is divisible by 3, so we subtract the current index 8)
// = 223
223

// 223 (previous number in the sequence)
// + 9 (current index in 1-indexed sequence)
// = 232 -> 232 + 9 (232 is divisible by 2, so we first add the current index 9)
// = 241 -> 241 * 9 (and 232 is also divisible by 4, so we then also multiply the current index 9)
// = 2169
2169

// 2169 (previous number in the sequence)
// + 10 (current index in 1-indexed sequence)
// 2179 (2179 is not divisible by 2, 3 nor 4)
2179

Regole della sfida:

  • Se la tua lingua non supporta nulla di più grande di 2 31 -1, puoi continuare la sequenza fino a quel massimo (quindi i primi 46 numeri, fino a - e incluso - 1,517,792,609).
  • Il formato di output è flessibile. Puoi restituire un array o un elenco, una stringa separata da spazi, virgole, ecc. La tua chiamata.

Regole generali:

  • Questo è , quindi vince la risposta più breve in byte.
    Non lasciare che le lingue di code-golf ti scoraggino dal pubblicare risposte con lingue non codegolfing. Prova a trovare una risposta il più breve possibile per "qualsiasi" linguaggio di programmazione.
  • Per la tua risposta valgono regole standard , quindi puoi usare STDIN / STDOUT, funzioni / metodo con i parametri corretti, programmi completi. La tua chiamata.
  • Sono vietate le scappatoie predefinite .
  • Se possibile, aggiungi un link con un test per il tuo codice.
  • Inoltre, si prega di aggiungere una spiegazione, se necessario.

Emettiamo l'ennesimo valore, i primi n valori o solo fino alla dimensione massima del nostro intero?
Gabriel Benamy,

@GabrielBenamy I primi 100 della sequenza.
Kevin Cruijssen,

1
Sono abbastanza sicuro che hai solo 99 numeri in quel blocco.
Kade,

2
La mia risposta non è d'accordo con la tua uscita solo sugli ultimi 13 numeri.
Gabriel Benamy,

1
@Shebang Risolto .. Ci scusiamo per l'inizio sciatto .. È stato nella sandbox per 5 giorni, ma immagino che né io né gli altri l'abbiamo notato ..: S Dovrebbe essere corretto ora.
Kevin Cruijssen,

Risposte:


1

05AB1E , 24 23 byte

-1 byte grazie a Kevin Crujissen

¼¾тF=¼¾+©…+-*v®NÌÖi¾y.V

Provalo online!

Spiegazione:

¼¾                        # set the counter to 1, then push 1
  тF                      # repeat the following 100 times
    =                     # print the current number in the sequence
     ¼¾                   # increment the counter
       +                  # add it to the current number
        ©                 # save the result in the register
         …+-*v            # for each of '+', '-', and '*'...
              ®   i       # if the register...
                 Ö        # is divisible by...
               NÌ         # the loop index + 2...
                   ¾y.V   # then apply the current operation

1
UXHo cercato di trovare qualcosa di più corto con la variabile counter in modo che possa essere rimosso, ma non ci riesco. Finisco anche con 24 byte perché inizia 0invece che 1. Ora l'ho aumentato prima, ma poi dobbiamo ripetere i 101tempi anziché 100.. Ah bene.
Kevin Cruijssen,

@KevinCruijssen sì, quello UXè un pugno nell'occhio. Ho cercato di sbarazzarsi di esso per un po 'e si è conclusa con un gruppo di 24 e 25 varianti: 1тF=NÌ©+DÑ3L>Ãv®…-*+yè.V, 1тL>v=y+©3F®NÌÖiy…+-*Nè.V... Non ho considerato utilizzando la variabile contatore, questo è interessante.
Grimmy,

1
@KevinCruijssen il tuo 24 ha ispirato un 23: basta usare тFinvece di Ƶ0µ. L'ho modificato in, grazie! (PS: dovrebbe esserci davvero un singolo byte ¼¾...)
Grimmy,

Ah, carino. Ho pensato che avresti trovato qualcosa in qualche modo, ahah. ;) E sì, un single byter ¼¾sarebbe carino, anche se ad essere sinceri, non lo uso quasi mai in quel modo. Il built-in a byte singolo che preferirei di più in questo momento è una seconda ©®variabile che non viene visualizzata. Forse a partire da una stringa vuota, ""come hai già detto in un'altra sfida.
Kevin Cruijssen,

8

R, 85 82 79 76 72 70 byte

for(i in 2:56)T[i]=((z=i+T[i-1])+i*(!z%%2)-i*(!z%%3))*`if`(z%%4,1,i);T

ungolfed:

s=1 ## formerly s=1:56, formerly s=1:100
for(i in 2:56){
    z=i+s[i-1]
    s[i]=(z+i*(z%%2<1)-i*(z%%3<1))*(1+(i-1)*(z%%4<1))
}
s

Grazie a @rturnbull per aver sottolineato che posso usare (!z%%3)invece di (z%%3<1)controllare i moduli e che la definizione di zun accade quando viene usata per la prima volta.

Ha eliminato 3-4 caratteri abusando dell'estensione vettoriale: la risposta inizialmente è iniziata, s=1:56...ma non è necessario farlo, la lunghezza di sverrà estesa in base alle esigenze.

Ho salvato altri 3 byte sostituendo l'ultima condizione con una chiamata alla "if"funzione (sì, è una funzione corretta in R!)

Salvati altri 4 byte sostituendoli scon T, che è un builtin uguale al TRUEquale è anche uguale a 1. L'ho realizzato contemporaneamente a @rturnbull (onesto!)

Questo soffre di alcuni problemi numerici quando superiamo 2 ^ 52, ma non c'è nulla che io possa fare al riguardo --- R può usare doubletipi solo per numeri maggiori di2^31-1 , ma memorizzano numeri interi fino a 2 ^ 52 esattamente. Pertanto, mi è permesso di emettere solo i primi 56 termini (l'ultimo termine che è "giusto") che salva un byte nel caso di 100 lunghezze.

Ecco l'output della versione a 56 lunghezze:

    > for(i in 2:56){z=i+T[i-1];T[i]=(z+i*(!z%%2)-i*(!z%%3))*`if`(z%%4,1,i)};T
 [1]               1               1              21              25              30             216
 [7]             223             223            2169            2179            2190            2202
[13]            2215            2215            2245            2261            2295            2295
[19]            2333            2353            2395            2417           56649           56649
[25]           56699           56725         1533033         1533061         1533090        45993600
[31]        45993631        45993631      1517792001      1517792035      1517792070      1517792106
[37]      1517792143      1517792143      1517792221      1517792261      1517792343      1517792343
[43]      1517792429      1517792473      1517792563      1517792609     71336257041     71336257041
[49]     71336257139     71336257189   3638149121841   3638149121893   3638149121946 196460052588000
[55] 196460052588055 196460052588055

1
Direi che il looping solo fino a 56 è un gioco equo, data la descrizione della sfida.
Billywob,

@Billywob ha davvero ragione. Nella descrizione dichiaro " Se la tua lingua non supporta qualcosa di più grande di 2 ^ 31-1, puoi continuare la sequenza fino a quel massimo (quindi i primi 46 numeri, fino a - e incluso - 1,517,792,609). ", Ma questo di ovviamente vale anche per numeri diversi da 32 bit. Se R non riesce a gestire nulla di più grande, i primi 56 numeri vanno benissimo. E sì, se sai che non può mai andare oltre 56, puoi cambiare 100in 56per salvare un byte.
Kevin Cruijssen,

1
È possibile salvare tre byte modificando z%%2<1(e così via) in !z%%2, abusando della conversione di tipo implicita.
rturnbull,

Grazie @rturnbull, per qualche motivo ho pensato di !non battere %%, ma a quanto pare lo fa!
JDL,

2
È inoltre possibile abusare Te utilizzarlo al posto di s, consentendo di rimuovere il s=1;, salvando altri quattro byte. È possibile piegare la definizione di znella definizione di s[i](beh, T[i]ora), in questo modo: T[i]=((z=i+T[i-1])+ ...ciò significa che puoi perdere le parentesi graffe, salvando qualche altro byte. EDIT: Oh, vedo che hai fatto il Ttrucco mentre stavo scrivendo il mio commento! Le grandi menti pensano allo stesso modo, dicono.
rturnbull,

5

Python 3, 82 78 76 74 72 byte

i=s=1
exec('print(s);i+=1;s+=i;s=(s+i-i*(s%2+(s%3<1)))*i**(s%4<1);'*100)

Produzione:

1
1
21
25
30
216
223
223
2169
2179
2190
2202
2215
2215
2245
2261
2295
2295
2333
2353
2395
2417
56649
56649
56699
56725
1533033
1533061
1533090
45993600
45993631
45993631
1517792001
1517792035
1517792070
1517792106
1517792143
1517792143
1517792221
1517792261
1517792343
1517792343
1517792429
1517792473
1517792563
1517792609
71336257041
71336257041
71336257139
71336257189
3638149121841
3638149121893
3638149121946
196460052588000
196460052588055
196460052588055
11198222997525633
11198222997525691
11198222997525750
11198222997525810
11198222997525871
11198222997525871
11198222997525997
11198222997526061
11198222997526191
11198222997526191
11198222997526325
11198222997526393
11198222997526531
11198222997526601
795073832824398753
795073832824398753
795073832824398899
795073832824398973
59630537461829934225
59630537461829934301
59630537461829934378
4651181922022734887568
4651181922022734887647
4651181922022734887647
376745735683841525912529
376745735683841525912611
376745735683841525912694
376745735683841525912778
376745735683841525912863
376745735683841525912863
376745735683841525913037
376745735683841525913125
376745735683841525913303
376745735683841525913303
376745735683841525913485
376745735683841525913577
376745735683841525913763
376745735683841525913857
35790844889964944961834465
35790844889964944961834465
35790844889964944961834659
35790844889964944961834757
3543293644106529551221660545
3543293644106529551221660645

I suggerimenti sono benvenuti!



4

05AB1E , 34 31 30 byte

XTnFD,NÌ©+D3L>%_`X®‚sèrŠs-®*+*

Provalo online!

Spiegazione

X                               # initialize stack with 1
 TnF                            # for N in [0 ... 99]
    D,                          # print a copy of top of stack
      NÌ©                       # increase index N by 2 and store in register
         +                      # add this to current value
          D                     # make a copy of the current value
           3L>                  # push the list [2,3,4]
              %                 # take current value mod elements in list
               _                # invert this
                `               # push the elements from the list to stack
                 X®‚sè          # index into list [1,N+2] with the result of mod 4
                      rŠs-      # subtract result of mod 3 from result of mod 2
                          ®*    # multiply by N+2
                            +   # add this to current value
                             *  # multiply current value with the result from index operation

3

Python 2, 76 byte

Implementazione piuttosto standard, penso che usando un'istruzione exec piuttosto che un ciclo while sia stato salvato 2 byte circa. Un metodo ricorsivo potrebbe essere più breve, immagino che xnor apparirà presto;)

n=1
f=1
exec'print f;n+=1;d=f+n;f=(d+n*(d%2<1)-n*(d%3<1))*[1,n][d%4<1];'*100

Se avessi usato gli aggiornamenti che TheNumberOne aveva capito, sarei arrivato a 69 byte (ma poi avrei copiato)

n=f=1;exec'print f;n+=1;d=f+n;f=(d+n-n*(d%2+(d%3<1))*n**(d%4<1);'*100

Produzione:

1
1
21
25
30
216
223
223
2169
2179
2190
2202
2215
2215
2245
2261
2295
2295
2333
2353
2395
2417
56649
56649
56699
56725
1533033
1533061
1533090
45993600
45993631
45993631
1517792001
1517792035
1517792070
1517792106
1517792143
1517792143
1517792221
1517792261
1517792343
1517792343
1517792429
1517792473
1517792563
1517792609
71336257041
71336257041
71336257139
71336257189
3638149121841
3638149121893
3638149121946
196460052588000
196460052588055
196460052588055
11198222997525633
11198222997525691
11198222997525750
11198222997525810
11198222997525871
11198222997525871
11198222997525997
11198222997526061
11198222997526191
11198222997526191
11198222997526325
11198222997526393
11198222997526531
11198222997526601
795073832824398753
795073832824398753
795073832824398899
795073832824398973
59630537461829934225
59630537461829934301
59630537461829934378
4651181922022734887568
4651181922022734887647
4651181922022734887647
376745735683841525912529
376745735683841525912611
376745735683841525912694
376745735683841525912778
376745735683841525912863
376745735683841525912863
376745735683841525913037
376745735683841525913125
376745735683841525913303
376745735683841525913303
376745735683841525913485
376745735683841525913577
376745735683841525913763
376745735683841525913857
35790844889964944961834465
35790844889964944961834465
35790844889964944961834659
35790844889964944961834757
3543293644106529551221660545
3543293644106529551221660645

3

JavaScript, 75 63 byte

for(n=p=0;n++<57;alert(p=p%4?q:q*n))q=(p+=n)%2?p:p+n,q-=p%3?0:n

Un'altra versione:

for(n=p=0;n++<57;)alert(p=((p+=n)+(!(p%2)-!(p%3))*n)*(p%4?1:n))

Entrambi si fermano all'indice 57 (indicizzato 0) perché in quel momento l'output supera la dimensione del numero sicuro di JavaScript (2 53 - 1). Si scopre che un loop è molto più breve di una funzione ricorsiva, anche con ES6:

f=(n=0,p=0)=>n++>56?[]:(q=(p+=n)%2?p:p+n,q-=p%3?0:n,[q*=p%4?1:n,...f(n,q)])

Questo restituisce una matrice dei primi 57 elementi.


Penso che dovresti evitare di superare ~ 50-60 perché allora superi Number.MAX_SAFE_INTEGER e le tue divisioni diventeranno errate. Ho anche provato la mapversione per completezza e anch'essa con clock a 75 byte.
Neil,

@Neil Ah, grazie. Per essere precisi, supera Number.MAX_SAFE_INTEGER dopo 57 voci.
ETHproductions

3

Brain-Flak 476 466 462 456 446 byte

6 byte salvati grazie a Wheat Wizard

(((((((())<>()(())()){}){}){}())){}{}){({}[()]<(((({})<>({}())<>))<({}(()())(<()>)){({}[()]<(({}()[({})])){{}(<({}({}))>)}{}>)}({}{}<{}(())>){((<{}{}>))}{}{(<{}({}<>({})<>)>)}{}>)(({})<({}(()()())(<()>)){({}[()]<(({}()[({})])){{}(<({}({}))>)}{}>)}({}{}<{}(())>){((<{}{}>))}{}{(<{}({}<>[({})]<>)>)}{}>)({}(()()()())(<()>)){({}[()]<(({}()[({})])){{}(<({}({}))>)}{}>)}({}{}<{}(())>){((<{}{}>))}{}{(<{}(<>({}))({<({}[()])><>({})<>}{}<><{}>)>)}{}>)}{}

Provalo online!

Questo è molto lento. TIO non è in grado di gestire tutti i 100 numeri (il limite sembra essere 22 o 23). Quindi, questo esempio genera solo i primi 20, ma il codice funzionerebbe anche per 100.

Breve spiegazione:

      (())<>                           # push a 1 (the index) and switch stacks 
            (())                       # then push a 1 (the starting number)
((((((          ()()){}){}){}())){}{}) # and a 99 (a counter so that we only print the 
                                       # first 100 numbers)

# repeat until the counter is 0
{
  # pop the counter and push it minus 1 after:
  ({}[()]<
    # hold onto the current number plus the index (leave a copy on the stack to be printed)
    # and increment the index
    (((({})<>({}())<>))<
      # push logical not of (current mod 2)
      ({}(()())(<()>)){({}[()]<(({}()[({})])){{}(<({}({}))>)}{}>)}({}{}<{}(())>){((<{}{}>))}{}
      # if !(current mod 2) is 1, add the index
      {(<{}({}<>({})<>)>)}{}
    # push the current number back on
    >)
    # hold onto the current number
    (({})<
     # push logical not of (current mod 3)
     ({}(()()())(<()>)){({}[()]<(({}()[({})])){{}(<({}({}))>)}{}>)}({}{}<{}(())>){((<{}{}>))}{}
     # if !(current mod 3) is 1, then subtract the index
     {(<{}({}<>[({})]<>)>)}{}
    # push the current number back on
    >)
    # push logical not of (current mod 4)
    ({}(()()()())(<()>)){({}[()]<(({}()[({})])){{}(<({}({}))>)}{}>)}({}{}<{}(())>){((<{}{}>))}{}
    # if !(current mod 4) is 1, multiply by the index
    {(<{}(<>({}))({<({}[()])><>({})<>}{}<><{}>)>)}{}
  # put the counter back on
  >)
# loop until done
}
# pop the counter
{}

({}<>[({})]<>)(<()>)può essere sostituito con(<({}<>[({})]<>)>)
Post Rock Garf Hunter il

@WheatWizard Aggiornato. Grazie!
Riley,

1

Java 7, 316 byte

import java.math.*;String c(){String r="";BigInteger t=BigInteger.ONE,x,p;for(int i=2;i<102;){r+=t+" ";p=(t=t.add(x=new BigInteger(i+++"")));t=x(p,2)?t.add(x):t;t=x(p,3)?t.subtract(x):t;t=x(p,4)?t.multiply(x):t;}return r;}boolean x(BigInteger p,int i){return p.mod(new BigInteger(i+"")).compareTo(BigInteger.ONE)<0;}

Codice non testato e test:

Provalo qui.

import java.math.*;
class M{
  static String c(){
    String r = "";
    BigInteger t = BigInteger.ONE,
               x,
               p;
    for(int i = 2; i < 102;){
      r += t+" ";
      p = (t = t.add(x = new BigInteger(i++ + "")));
      t = x(p, 2)
           ? t.add(x)
           : t;
      t = x(p, 3)
           ? t.subtract(x)
           : t;
      t = x(p, 4)
           ? t.multiply(x)
           : t;
    }
    return r;
  }

  public static void main(String[] a){
    System.out.println(c());
  }

  static boolean x(BigInteger p, int i){
    return p.mod(new BigInteger(i+"")).compareTo(BigInteger.ONE) < 0;
  }
}

Produzione:

1 1 21 25 30 216 223 223 2169 2179 2190 2202 2215 2215 2245 2261 2295 2295 2333 2353 2395 2417 56649 56649 56699 56725 1533033 1533061 1533090 45993600 45993631 45993631 1517792001 1517792035 1517792070 1517792106 1517792143 1517792143 1517792221 1517792261 1517792343 1517792343 1517792429 1517792473 1517792563 1517792609 71336257041 3424140340272 3424140340321 3424140340371 3424140340473 3424140340525 3424140340631 3424140340631 3424140340741 3424140340797 3424140340911 3424140340969 202024280124133 202024280124193 202024280124315 202024280124377 12727529647843689 814561897462000192 52946523335030016705 52946523335030016771 52946523335030016905 52946523335030016973 52946523335030017111 52946523335030017111 52946523335030017253 52946523335030017253 52946523335030017399 52946523335030017473 3970989250127251321725 301795183009671100456876 301795183009671100456953 301795183009671100457031 301795183009671100457110 301795183009671100457270 301795183009671100457351 301795183009671100457433 25049000189802701337980717 25049000189802701337980801 25049000189802701337980971 25049000189802701337981057 2179263016512835016404367097 191775145453129481443584312280 17067987945328523848479003800841 1536118915079567146363110342083790 1536118915079567146363110342083790 1536118915079567146363110342083974 1536118915079567146363110342083974 144395178017479311758132372155911228 13717541911660534617022575354811575685 13717541911660534617022575354811575781 13717541911660534617022575354811575975 13717541911660534617022575354811576073 1358036649254392927085234960126346050829 

1

C #, 120 byte

Proprio come nessuna persona sana di mente giocherebbe a golf in Java, nessuna persona sana di mente dovrebbe giocare a golf in C #! Ma fanculo, volevo vedere cosa posso fare. Il 1Mcast fè un decimale che ha abbastanza precisione per questa risposta senza che io debba scrivere decimal. Inoltre, l'incremento sul posto salva alcuni byte sulla mia risposta Python. alla fine è ancora più lungo di 50 byte.

void k(){int n=1;var f=1M;while(n<101){Console.WriteLine(f);var d=++n+f;f=(d+n*((d%2<1?1:0)-(d%3<1?1:0)))*(d%4<1?n:1);}}

Ecco la versione più leggibile (e eseguibile):

using System;
class P
{
    static void Main(string[]a) 
    {
        int n = 1;
        var f = 1M;
        while (n < 101) 
        {
            Console.WriteLine(f);
            var d = ++n + f;
            f = (d + n * ((d % 2 < 1 ? 1 : 0) - (d % 3 < 1 ? 1 : 0))) * (d % 4 < 1 ? n : 1);
        }
        Console.Read();
    }
}

Puoi giocare a golf a 1 byte cambiando whilein fore inserendo int in questo modo:for(int n=1;n<101;)
Kevin Cruijssen,

Puoi persino giocare a golf in questo modo: void k(){for(decimal f=1,d,n=1;n<101;)Console.WriteLine(f=((d=++n+f)+n*((d%2<1?1:0)-(d%3<1?1:0)))*(d%4<1?n:1));}( 112 byte )
Kevin Cruijssen,

1

Lotto, 110 byte

@set n=0
@for /l %%i in (1,1,46)do @set/an=((n+=%%i)+(!(n%%2)-!(n%%3))*%%i)*(~-%%i*!(n%%4)+1)&call echo %%n%%

Utilizza la formula di @ETHproductions, ma leggermente modificata perché Batch non ha ?:. Batch utilizza numeri interi con segno a 32 bit, quindi i loop si arrestano a 46.


1

Perl, 75 byte

use bigint;$a+=$_,say$a=($a+($a%2?0:$_)-($a%3?0:$_))*($a%4?1:$_)for(1..100)

Il codice genera ogni valore su una nuova riga e calcola tutti i 100 valori.


-Mbigint, nessuna parentesi attorno al 1..100 , e !($a%2)*$_invece di ($a%2?0:$_)(uguale per a%3..) dovrebbe salvare qualche byte;)
Dada,

Riduce a 60 byte con quei suggerimenti e alcuni altri massaggi.
Xcali

1

Haskell, 70 64 byte

a%b=0^mod a b
n#i|s<-n+i=(s+s%2*i-s%3*i)*i^s%4
scanl1(#)[1..100]

scanl1(#)[1..100]restituisce l'elenco con i primi 100 elementi. Un byte in meno se riesco a rimanere nell'intervallo 2 ^ 31 (-> [1..46]).

scanl1è come foldl1ma raccoglie i risultati intermedi in un elenco. I test di divisibilità vengono eseguiti tramite la funzione di aiuto %che ritorna 0^0 = 1se divisibile e in 0^x = 0caso contrario.


1

J, 46 byte

(,{:((]^0=4|+)*(]*0=2|+)++-]*0=3|+)1+#)^:99]1x

Applica il metodo descritto nella sfida.

uso

Il comando aggiuntivo (,.~#\)viene utilizzato per aggiungere indici a ciascun valore.

   (,.~#\) (,{:((]^0=4|+)*(]*0=2|+)++-]*0=3|+)1+#)^:99]1x
  1                            1
  2                            1
  3                           21
  4                           25
  5                           30
  6                          216
  7                          223
  8                          223
  9                         2169
 10                         2179
 11                         2190
 12                         2202
 13                         2215
 14                         2215
 15                         2245
 16                         2261
 17                         2295
 18                         2295
 19                         2333
 20                         2353
 21                         2395
 22                         2417
 23                        56649
 24                        56649
 25                        56699
 26                        56725
 27                      1533033
 28                      1533061
 29                      1533090
 30                     45993600
 31                     45993631
 32                     45993631
 33                   1517792001
 34                   1517792035
 35                   1517792070
 36                   1517792106
 37                   1517792143
 38                   1517792143
 39                   1517792221
 40                   1517792261
 41                   1517792343
 42                   1517792343
 43                   1517792429
 44                   1517792473
 45                   1517792563
 46                   1517792609
 47                  71336257041
 48                  71336257041
 49                  71336257139
 50                  71336257189
 51                3638149121841
 52                3638149121893
 53                3638149121946
 54              196460052588000
 55              196460052588055
 56              196460052588055
 57            11198222997525633
 58            11198222997525691
 59            11198222997525750
 60            11198222997525810
 61            11198222997525871
 62            11198222997525871
 63            11198222997525997
 64            11198222997526061
 65            11198222997526191
 66            11198222997526191
 67            11198222997526325
 68            11198222997526393
 69            11198222997526531
 70            11198222997526601
 71           795073832824398753
 72           795073832824398753
 73           795073832824398899
 74           795073832824398973
 75         59630537461829934225
 76         59630537461829934301
 77         59630537461829934378
 78       4651181922022734887568
 79       4651181922022734887647
 80       4651181922022734887647
 81     376745735683841525912529
 82     376745735683841525912611
 83     376745735683841525912694
 84     376745735683841525912778
 85     376745735683841525912863
 86     376745735683841525912863
 87     376745735683841525913037
 88     376745735683841525913125
 89     376745735683841525913303
 90     376745735683841525913303
 91     376745735683841525913485
 92     376745735683841525913577
 93     376745735683841525913763
 94     376745735683841525913857
 95   35790844889964944961834465
 96   35790844889964944961834465
 97   35790844889964944961834659
 98   35790844889964944961834757
 99 3543293644106529551221660545
100 3543293644106529551221660645

1

Perl 6 , 62 byte

1,{((my \v=$_+my \n=++$+1)+n*(v%%2-v%%3))*(v%%4*n||1)}.../645/

Provalo online!

Davvero dovuto lavorare per ottenere il mio conteggio dei byte al di sotto di quelli delle altre soluzioni non linguistiche.

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.