Robustezza nel dividere una giunta


16

Diciamo che una funzione booleana è una -junta se ha al massimo variabili influenzanti.f : { 0 , 1 } n{ 0 , 1 } f:{0,1}n{0,1}k kf fkk

Sia sia una -junta. Indica le variabili di con . Correggi Chiaramente, esiste tale che contiene almeno delle variabili influenti di .f : { 0 , 1 } n{ 0 , 1 } f:{0,1}n{0,1}2 k 2kf fx 1 , x 2 , , x n x1,x2,,xnS 1 = { x 1 , x 2 , , x n2 },S 2 = { x n2 +1,xn2 +2,,xn}.

S1={x1,x2,,xn2},S2={xn2+1,xn2+2,,xn}.
S{S1,S2}S{S1,S2}SSkkff

Ora lascia e supponi che sia -far da ogni -junta (cioè, si deve cambiare una frazione di almeno dei valori di per renderlo una -junta). Possiamo fare una versione "robusta" della precedente dichiarazione? Cioè, c'è una costante universale e un insieme tale che è -far da ogni funzione che contiene al massimo variabili influenzanti in ?ϵ > 0 ϵ>0f : { 0 , 1 } n{ 0 , 1 } f:{0,1}n{0,1}ϵ ϵ2 k 2kϵ ϵf f2 k 2kc cS { S 1 , S 2 } S{S1,S2}f fϵcϵc kkSS

Nota: nella formulazione originale della domanda, stato corretto come . L'esempio di Neal mostra che tale valore di non è sufficiente. Tuttavia, poiché nei test di proprietà di solito non ci occupiamo troppo delle costanti, ho leggermente rilassato la condizione.cc22cc


Puoi chiarire le tue condizioni? Una variabile "influenza" a meno che il valore di f sia sempre indipendente dalla variabile? "Cambia un valore di " significa, cambia uno dei valori per qualche particolare ? fff(x)f(x)xx
Neal Young,

Naturalmente, la variabile x i sta influenzando se esiste un n stringa bit y tale che f ( y ) f ( y ' ) , dove y ' è la stringa y con i 'th coordinate capovolto. Cambiare il valore di f significa fare un cambiamento nella sua tabella di verità. xinyf(y)f(y)yyif

Risposte:


17

La risposta è si". La prova è per contraddizione.

Per comodità notazionale, denotiamo le prime n / 2 variabili per x e le seconde n / 2 variabili per y . Supponiamo che f ( x , y ) sia δ -cludi a una funzione f 1 ( x , y ) che dipende solo dalle coordinate k di x . Indica le sue coordinate influenti con T 1 . Allo stesso modo, supponiamo che f ( x , y ) sian/2xn/2yf(x,y)δf1(x,y)kxT1f(x,y)δ -clude a una funzione f 2 ( x , y ) che dipende solo dallecoordinate k di y . Indica le sue coordinate influenti con T 2 . Dobbiamo dimostrare che f è 4 δ - vicino a un 2 k -junta ˜ f ( x , y ) .δf2(x,y)kyT2f4δ2kf~(x,y)

Diciamo che ( x 1 , y 1 ) ( x 2 , y 2 ) se x 1 e x 2 concordano su tutte le coordinate in T 1 e y 1 e y 2 concordano su tutte le coordinate in T 2 . Scegliamo in modo uniforme a caso un rappresentante per ogni classe di equivalenza. Sia ( ˉ x , ˉ y ) il rappresentante della classe di ( x ,(x1,y1)(x2,y2)x1x2T1y1y2T2(x¯,y¯)y ) . Definire ˜ f come segue: ˜ f ( x , y ) = f ( ˉ x , ˉ y ) .(x,y)f~

f~(x,y)=f(x¯,y¯).

È ovvio che ˜ f è una 2 k -junta (dipende solo dalle variabili in T 1T 2 ) . Dimostreremo che è a distanza di 4 δ da f nell'aspettativa.f~2kT1T2)4δf

Vogliamo dimostrare che Pr ˜ f ( Pr x , y ( ˜ f ( x , y ) f ( x , y ) ) ) = Pr ( f ( ˉ x , ˉ y ) f ( x , y ) ) 4 δ , dove x ed y sono scelti uniformemente casuale. Prendi in considerazione un vettore casuale

Prf~(Prx,y(f~(x,y)f(x,y)))=Pr(f(x¯,y¯)f(x,y))4δ,
xy~ X ottenuti dax, mantenendo tutti i bit inT1e lanciando casualmente tutti i bit non inT1, e un vettore ~ y definito in modo simile. Nota che Pr( ˜ f (x,y)f(x,y))=Pr(f( ˉ x , ˉ y )f(x,y))=Prx~xT1T1y~( f ( ˜ x , ˜ y ) f ( x , y ) ) .
Pr(f~(x,y)f(x,y))=Pr(f(x¯,y¯)f(x,y))=Pr(f(x~,y~)f(x,y)).

Abbiamo, Pr ( f ( x , y ) f ( ˜ x , y ) ) Pr ( f ( x , y ) f 1 ( x , y ) ) + Pr ( f 1 ( x , y ) f 1 ( ˜ x , y ) ) + Pr ( f1(˜x,y)f(˜x,y))δ+0+δ=2δ.

Pr(f(x,y)f(x~,y))Pr(f(x,y)f1(x,y))+Pr(f1(x,y)f1(x~,y))+Pr(f1(x~,y)f(x~,y))δ+0+δ=2δ.

Similarly, Pr(f(˜x,y)f(˜x,˜y))2δPr(f(x~,y)f(x~,y~))2δ. We have Pr(f(ˉx,ˉy)f(x,y))4δ.

Pr(f(x¯,y¯)f(x,y))4δ.
QED

It easy to “derandomize” this proof. For every (x,y)(x,y), let ˜f(x,y)=1f~(x,y)=1 if f(x,y)=1f(x,y)=1 for most (x,y)(x,y) in the equivalence class of (x,y)(x,y), and ˜f(x,y)=0f~(x,y)=0, otherwise.


12

The smallest cc that the bound holds for is c=1212.41c=1212.41.

Lemmas 1 and 2 show that the bound holds for this cc. Lemma 3 shows that this bound is tight.

(In comparison, Juri's elegant probabilistic argument gives c=4c=4.)

Let c=121c=121. Lemma 1 gives the upper bound for k=0k=0.

Lemma 1: If ff is ϵgϵg-near a function gg that has no influencing variables in S2S2, and ff is ϵhϵh-near a function hh that has no influencing variables in S1S1, then ff is ϵϵ-near a constant function, where ϵ(ϵg+ϵh)/2cϵ(ϵg+ϵh)/2c.

Proof. Let ϵϵ be the distance from ff to a constant function. Suppose for contradiction that ϵϵ does not satisfy the claimed inequality. Let y=(x1,x2,,xn/2)y=(x1,x2,,xn/2) and z=(xn/2+1,,xn)z=(xn/2+1,,xn) and write ff, gg, and hh as f(y,z)f(y,z), g(y,z)g(y,z) and h(y,z)h(y,z), so g(y,z)g(y,z) is independent of zz and h(y,z)h(y,z) is independent of yy.

(I find it helpful to visualize ff as the edge-labeling of the complete bipartite graph with vertex sets {y}{y} and {z}{z}, where gg gives a vertex-labeling of {y}{y}, and hh gives a vertex-labeling of {z}{z}.)

Let g0g0 be the fraction of pairs (y,z)(y,z) such that g(y,z)=0g(y,z)=0. Let g1=1g0g1=1g0 be the fraction of pairs such that g(y,z)=1g(y,z)=1. Likewise let h0h0 be the fraction of pairs such that h(y,z)=0h(y,z)=0, and let h1h1 be the fraction of pairs such that h(y,z)=1h(y,z)=1.

Without loss of generality, assume that, for any pair such that g(y,z)=h(y,z)g(y,z)=h(y,z), it also holds that f(y,z)=g(y,z)=h(y,z)f(y,z)=g(y,z)=h(y,z). (Otherwise, toggling the value of f(y,z)f(y,z) allows us to decrease both ϵgϵg and ϵhϵh by 1/2n1/2n, while decreasing the ϵϵ by at most 1/2n1/2n, so the resulting function is still a counter-example.) Say any such pair is ``in agreement''.

The distance from ff to gg plus the distance from ff to hh is the fraction of (x,y)(x,y) pairs that are not in agreement. That is, ϵg+ϵh=g0h1+g1h0ϵg+ϵh=g0h1+g1h0.

The distance from ff to the all-zero function is at most 1g0h01g0h0.

The distance from ff to the all-ones function is at most 1g1h11g1h1.

Further, the distance from ff to the nearest constant function is at most 1/21/2.

Thus, the ratio ϵ/(ϵg+ϵh)ϵ/(ϵg+ϵh) is at most min(1/2,1g0h0,1g1h1)g0h1+g1h0,

min(1/2,1g0h0,1g1h1)g0h1+g1h0,
where g0,h0[0,1]g0,h0[0,1] and g1=1g0g1=1g0 and h1=1h0h1=1h0.

By calculation, this ratio is at most 12(21)=c/212(21)=c/2. QED

Lemma 2 extends Lemma 1 to general kk by arguing pointwise, over every possible setting of the 2k2k influencing variables. Recall that c=121c=121.

Lemma 2: Fix any kk. If ff is ϵgϵg-near a function gg that has kk influencing variables in S2S2, and ff is ϵhϵh-near a function hh that has kk influencing variables in S1S1, then ff is ϵϵ-near a function ˆff^ that has at most 2k2k influencing variables, where ϵ(ϵg+ϵh)/2cϵ(ϵg+ϵh)/2c.

Proof. Express ff as f(a,y,b,z)f(a,y,b,z) where (a,y)(a,y) contains the variables in S1S1 with aa containing those that influence hh, while (b,z)(b,z) contains the variables in S2S2 with bb containing those influencing gg. So g(a,y,b,z)g(a,y,b,z) is independent of zz, and h(a,y,b,z)h(a,y,b,z) is independent of yy.

For each fixed value of a and b, define Fab(y,z)=f(a,y,b,z), and define Gab and Hab similarly from g and h respectively. Let ϵgab be the distance from Fab to Gab (restricted to (y,z) pairs). Likewise let ϵhab be the distance from Fab to Hab.

By Lemma 1, there exists a constant cab such that the distance (call it ϵab) from Fab to the constant function cab is at most (ϵhab+ϵgab)/(2c). Define ˆf(a,y,b,z)=cab.

Clearly ˆf depends only on a and b (and thus at most k variables).

Let ϵˆf be the average, over the (a,b) pairs, of the ϵab's, so that the distance from f to ˆf is ϵˆf.

Likewise, the distances from f to g and from f to h (that is, ϵg and ϵh) are the averages, over the (a,b) pairs, of, respectively, ϵgab and ϵhab.

Since ϵab(ϵhab+ϵgab)/(2c) for all a,b, it follows that ϵˆf(ϵg+ϵh)/(2c). QED

Lemma 3 shows that the constant c above is the best you can hope for (even for k=0 and ϵ=0.5).

Lemma 3: There exists f such that f is (0.5/c)-near two functions g and h, where g has no influencing variables in S2 and h has no influencing variables in S1, and f is 0.5-far from every constant function.

Proof. Let y and z be x restricted to, respectively, S1 and S2. That is, y=(x1,,xn/2) and z=(xn/2+1,,xn).

Identify each possible y with a unique element of [N], where N=2n/2. Likewise, identify each possible z with a unique element of [N]. Thus, we think of f as a function from [N]×[N] to {0,1}.

Define f(y,z) to be 1 iff max(y,z)12N.

By calculation, the fraction of f's values that are zero is (12)2=12, so both constant functions have distance 12 to f.

Define g(y,z) to be 1 iff y12N. Then g has no influencing variables in S2. The distance from f to g is the fraction of pairs (y,z) such that y<12N and z12N. By calculation, this is at most 12(112)=0.5/c

Similarly, the distance from f to h, where h(y,z)=1 iff z12N, is at most 0.5/c.

QED


First of all, thanks Neal! This indeed sums it up for k=0, and sheds some light on the general problem. However in the case of k=0 the problem is a bit degenerate (as 2k=k), so I'm more curious regarding the case of k1. I didn't manage to extend this claim for k>0, so if you have an idea on how to do it - I'd appreciate it. If it simplifies the problem, then the exact constants are not crucial; that is, ϵ/2-far can be replaced by ϵ/c-far, for some universal constant c.

2
I've edited it to add the extension to general k. And Yuri's argument below gives a slightly looser factor with an elegant probabilistic argument.
Neal Young

Sincere thanks Neal! This line of reasoning is quite enlightening.
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.