Quindi mi sono reso conto di recente che i filtri di Bessel, nonostante siano elencati insieme ad altri tipi comuni, sono davvero una strana sfera che appartiene a una "classe" diversa, e sto cercando di saperne di più.
La risposta di magnitudo rettangolare rappresenta la risposta del dominio di frequenza ideale, poiché la banda di transizione è zero e la banda di arresto ha attenuazione infinita. La risposta di magnitudine gaussiana, d'altra parte, rappresenta la risposta ideale nel dominio del tempo, in quanto non si verificano superamenti nella risposta all'impulso e nella risposta al gradino. Molte delle risposte ottenute nella pratica sono approssimazioni a queste fonti ideali
Quindi un filtro brickwall è una convoluzione con una funzione sinc e ha queste proprietà nel dominio della frequenza:
- Passband piatto
- Zero stopband
- Frequenza di rollio infinita / nessuna banda di transizione
È non causale e irrealizzabile a causa delle code infinite in entrambe le direzioni. Viene approssimato da questi filtri IIR, con l'approssimazione che migliora all'aumentare dell'ordine:
- Butterworth (banda passante massima piatta)
- Chebyshev (frequenza di roll-off massima con stopband o ripple passband)
- Ellittica (frequenza di roll-off massima con banda di arresto e ondulazione della banda passante)
- Legendre (velocità massima di roll-off con banda passante monotonica)
Il filtro gaussiano è una convoluzione con una funzione gaussiana e ha queste proprietà nel dominio del tempo:
- Zero overshoot
- Tempo minimo di salita e discesa
- Ritardo minimo del gruppo
È irrealizzabile per gli stessi motivi della funzione sinc e può essere approssimato da questi filtri IIR, più da vicino all'aumentare dell'ordine:
Ecco i filtri di Bessel di ordine crescente insieme a una linea tratteggiata gaussiana che ho scelto semplicemente perché sembrava adattarsi alla tendenza ( ):
Quindi le mie domande sono:
Finora è tutto a posto? Se è così, ci sono altri filtri IIR che si avvicinano al gaussiano? Per cosa sono ottimizzati? Forse uno che minimizza il superamento?
Se cerchi "IIR gaussian" puoi trovare alcune cose (Deriche? Van Vliet?), Ma non so se sono davvero gli stessi di un Bessel o se ottimizzano per qualche altra proprietà, ecc.