Abbiamo eseguito una regressione logistica a effetti misti utilizzando la sintassi seguente;
# fit model
fm0 <- glmer(GoalEncoding ~ 1 + Group + (1|Subject) + (1|Item), exp0,
family = binomial(link="logit"))
# model output
summary(fm0)
Oggetto e oggetto sono gli effetti casuali. Stiamo ottenendo un risultato dispari che è il coefficiente e la deviazione standard per il termine soggetto sono entrambi zero;
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )
Formula: GoalEncoding ~ 1 + Group + (1 | Subject) + (1 | Item)
Data: exp0
AIC BIC logLik deviance df.resid
449.8 465.3 -220.9 441.8 356
Scaled residuals:
Min 1Q Median 3Q Max
-2.115 -0.785 -0.376 0.805 2.663
Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 0.000 0.000
Item (Intercept) 0.801 0.895
Number of obs: 360, groups: Subject, 30; Item, 12
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.0275 0.2843 -0.1 0.92
GroupGeMo.EnMo 1.2060 0.2411 5.0 5.7e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr)
GroupGM.EnM -0.002
Questo non dovrebbe accadere perché ovviamente c'è una variazione tra i soggetti. Quando eseguiamo la stessa analisi in stata
xtmelogit goal group_num || _all:R.subject || _all:R.item
Note: factor variables specified; option laplace assumed
Refining starting values:
Iteration 0: log likelihood = -260.60631
Iteration 1: log likelihood = -252.13724
Iteration 2: log likelihood = -249.87663
Performing gradient-based optimization:
Iteration 0: log likelihood = -249.87663
Iteration 1: log likelihood = -246.38421
Iteration 2: log likelihood = -245.2231
Iteration 3: log likelihood = -240.28537
Iteration 4: log likelihood = -238.67047
Iteration 5: log likelihood = -238.65943
Iteration 6: log likelihood = -238.65942
Mixed-effects logistic regression Number of obs = 450
Group variable: _all Number of groups = 1
Obs per group: min = 450
avg = 450.0
max = 450
Integration points = 1 Wald chi2(1) = 22.62
Log likelihood = -238.65942 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
goal | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
group_num | 1.186594 .249484 4.76 0.000 .6976147 1.675574
_cons | -3.419815 .8008212 -4.27 0.000 -4.989396 -1.850234
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
_all: Identity |
sd(R.subject) | 7.18e-07 .3783434 0 .
-----------------------------+------------------------------------------------
_all: Identity |
sd(R.trial) | 2.462568 .6226966 1.500201 4.042286
------------------------------------------------------------------------------
LR test vs. logistic regression: chi2(2) = 126.75 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
Note: log-likelihood calculations are based on the Laplacian approximation.
i risultati sono quelli previsti con un coefficiente / se diverso da zero per il termine Soggetto.
Inizialmente pensavamo che ciò potesse avere a che fare con la codifica del termine Soggetto, ma cambiarlo da una stringa a un intero non ha fatto alcuna differenza.
Ovviamente l'analisi non funziona correttamente, ma non siamo in grado di individuare l'origine delle difficoltà. (NB qualcun altro su questo forum ha riscontrato un problema simile, ma questa discussione rimane senza risposta link alla domanda )
subject
sia o qualcos'altro su queste variabili, non è così "ovvio" per noi "! Anche il" coefficiente diverso da zero per il termine soggetto "dalla tua analisi Stata è 7.18e-07! Immagino tecnicamente che sia" diverso da zero ", ma non è neanche troppo lontano da 0 ...!