Ho il seguente modello m_plot
dotato di lme4::lmer
effetti casuali incrociati per partecipanti ( lfdn
) e oggetti ( content
):
Random effects:
Groups Name Variance Std.Dev. Corr
lfdn (Intercept) 172.173 13.121
role1 62.351 7.896 0.03
inference1 24.640 4.964 0.08 -0.30
inference2 52.366 7.236 -0.05 0.17 -0.83
inference3 21.295 4.615 -0.03 0.22 0.86 -0.77
content (Intercept) 23.872 4.886
role1 2.497 1.580 -1.00
inference1 18.929 4.351 0.52 -0.52
inference2 14.716 3.836 -0.16 0.16 -0.08
inference3 17.782 4.217 -0.17 0.17 0.25 -0.79
role1:inference1 9.041 3.007 0.10 -0.10 -0.10 -0.21 0.16
role1:inference2 5.968 2.443 -0.60 0.60 -0.11 0.78 -0.48 -0.50
role1:inference3 4.420 2.102 0.30 -0.30 0.05 -0.97 0.71 0.37 -0.90
Residual 553.987 23.537
Number of obs: 3480, groups: lfdn, 435 content, 20
Voglio conoscere i coefficienti di correlazione intraclasse (ICC) per partecipanti ed elementi. Grazie a questa grande risposta, in linea di principio so come ottenere l'ICC per il mio modello. Tuttavia, non sono sicuro se includere o meno le pendenze casuali:
vars <- lapply(summary(m_plot)$varcor, diag)
resid_var <- attr(summary(m_plot)$varcor, "sc")^2
total_var <- sum(sapply(vars, sum), resid_var)
# with random slopes
sapply(vars, sum)/total_var
## lfdn content
## 0.33822396 0.09880349
# only random intercepts:
sapply(vars, function(x) x[1]) / total_var
## lfdn.(Intercept) content.(Intercept)
## 0.17496587 0.02425948
Qual è la misura appropriata per la correlazione tra due risposte dello stesso partecipante rispetto allo stesso oggetto?