Distribuzione che descrive la differenza tra variabili distribuite binomiali negative?


18

Una distribuzione Skellam descrive la differenza tra due variabili che hanno distribuzioni di Poisson. Esiste una distribuzione simile che descrive la differenza tra le variabili che seguono distribuzioni binomiali negative?

I miei dati sono prodotti da un processo di Poisson, ma includono una discreta quantità di rumore, con conseguente sovradispersione nella distribuzione. Pertanto, la modellazione dei dati con una distribuzione binomiale negativa (NB) funziona bene. Se voglio modellare la differenza tra due di questi set di dati NB, quali sono le mie opzioni? Se aiuta, assume mezzi e varianza simili per i due set.


Esistono molte distribuzioni facili da descrivere che non hanno nomi standard.
Glen_b

Risposte:


22

Non conosco il nome di questa distribuzione, ma puoi derivarlo dalla legge della probabilità totale. Supponiamo che abbiano distribuzioni binomiali negative con parametri ( r 1 , p 1 ) e ( r 2 , p 2 ) , rispettivamente. Sto usando la parametrizzazione in cui X , Y rappresentano il numero di successi prima dei r 1 'th e r 2 ' th rispettivamente. Poi,X,Y(r1,p1)(r2,p2)X,Yr1r2

P(XY=k)=EY(P(XY=k))=EY(P(X=k+Y))=y=0P(Y=y)P(X=k+y)

Sappiamo

P(X=k+y)=(k+y+r11k+y)(1p1)r1p1k+y

e

P(Y=y)=(y+r21y)(1p2)r2p2y

così

P(XY=k)=y=0(y+r21y)(1p2)r2p2y(k+y+r11k+y)(1p1)r1p1k+y

Non è carino (yikes!). L'unica semplificazione che vedo subito è

p1k(1p1)r1(1p2)r2y=0(p1p2)y(y+r21y)(k+y+r11k+y)

which is still pretty ugly. I'm not sure if this is helpful but this can also be re-written as

p1k(1p1)r1(1p2)r2(r11)!(r21)!y=0(p1p2)y(y+r21)!(k+y+r11)!y!(k+y)!

I'm not sure if there is a simplified expression for this sum but it could be approximated numerically if you only need it to calculate p-values

I verified with simulation that the above calculation is correct. Here is a crude R function to calculate this mass function and carry out a few simulations

  f = function(k,r1,r2,p1,p2,UB)  
  {

  S=0
  const = (p1^k) * ((1-p1)^r1) * ((1-p2)^r2)
  const = const/( factorial(r1-1) * factorial(r2-1) ) 

  for(y in 0:UB)
  {
     iy = ((p1*p2)^y) * factorial(y+r2-1)*factorial(k+y+r1-1)
     iy = iy/( factorial(y)*factorial(y+k) )
     S = S + iy
  }

  return(S*const)
  }

 ### Sims
 r1 = 6; r2 = 4; 
 p1 = .7; p2 = .53; 
 X = rnbinom(1e5,r1,p1)
 Y = rnbinom(1e5,r2,p2)
 mean( (X-Y) == 2 ) 
 [1] 0.08508
 f(2,r1,r2,1-p1,1-p2,20)
 [1] 0.08509068
 mean( (X-Y) == 1 ) 
 [1] 0.11581
 f(1,r1,r2,1-p1,1-p2,20)
 [1] 0.1162279
 mean( (X-Y) == 0 ) 
 [1] 0.13888
 f(0,r1,r2,1-p1,1-p2,20)
 [1] 0.1363209

I've found the sum converges very quickly for all of the values I tried, so setting UB higher than 10 or so is not necessary. Note that R's built in rnbinom function parameterizes the negative binomial in terms of the number of failures before the r'th success, in which case you'd need to replace all of the p1,p2's in the above formulas with 1p1,1p2 for compatibility.


Thanks. I'll need some time to digest this, but your help is much appreciated.
chrisamiller

-2

Yes. skewed generalized discrete Laplace distribution is the difference of two negative binomial distributed random variables. For more clarifications refer the online available article "skewed generalized discrete Laplace distribution" by seetha Lekshmi.V. and simi sebastian


4
Can you provide a complete citation & a summary of the information in the paper so future readers can decide if it's something they want to pursue?
gung - Reinstate Monica

The article mentioned by @simi-sebastian (the author?) is ijmsi.org/Papers/Volume.2.Issue.3/K0230950102.pdf. However, unless I'm mistaken, it only addresses the case of the Negative Binomial variables X and Y both having the same dispersion parameter, rather than the more general case described by the original poster.
Constantinos
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.