Come si calcolano gli errori standard per una trasformazione dell'MLE?


9

Devo dedurre un parametro positivo . Per acomodare la positività ho ri-parametrizzato . Usando la routine MLE ho calcolato la stima puntuale e se per . La proprietà di invarianza dell'MLE mi dà direttamente una stima puntuale per , ma non sono sicuro di come calcolare se per . Grazie in anticipo per qualsiasi suggerimento o riferimento.pp=exp(q)qpp


Non puoi usare la stessa routine MLE per calcolare una stima puntuale e cercare direttamente ? p
whuber

Risposte:


20

Il metodo Delta viene utilizzato per questo scopo. Secondo alcune ipotesi di regolarità standard , sappiamo che l'MLE, per è approssimativamente (cioè asintoticamente) distribuito comeθ^θ

θ^N(θ,I1(θ))

where I1(θ) is the inverse of the Fisher information for the entire sample, evaluated at θ and N(μ,σ2) denotes the normal distribution with mean μ and variance σ2. The functional invariance of the MLE says that the MLE of g(θ), where g is some known function, is g(θ^) (as you pointed out) and has approximate distribution

g(θ^)N(g(θ),I1(θ)[g(θ)]2)

where you can plug in consistent estimators for the unknown quantities (i.e. plug in θ^ where θ appears in the variance). I would assume the standard errors you have are based on the Fisher information (since you have MLEs). Denote that standard error by s. Then the standard error of eθ^, as in your example, is

s2e2θ^

I may be interpreting you backwards and in reality you have the variance of the MLE of θ and want the variance of the MLE of log(θ) in which case the standard would be

s2/θ^2

1
Just a side note: there are also appropriate multivariate extensions whereby the derivatives are replaced by gradients, and the multiplications have to be matrix multiplications, so there's a bit more headache in figuring out where the transpose goes.
StasK

1
Thanks for pointing that out StasK. I believe in the multivariate case the asymptotic covariance of g(θ^) is g(θ)I(θ)1g(θ)
Macro

(+1) I added a link to the regularity assumptions (and some other things) since it isn't clear whether these are satisfied in the OP's problem. I might have said that θ^ is asymptotically normal and not approximately normal, since the convergence rates can be slow at times.
MånsT

Thank you @MånsT, I also did clarify that I meant asymptotically when I said approximately :)
Macro

6

Macro gave the correct answer on how to transform standard errors via the delta method. Though the OP specifically asked for the standard errors, I suspect that the objective is to produce confidence intervals for p. Besides computing estimated standard errors of p^ you can directly transform a confidence interval, [q1,q2], in the q-parametrization to a confidence interval [exp(q1),exp(q2)] in the p-parametrization. This is perfectly valid, and it may even be a better idea depending on how well the normal approximation used to justify a confidence interval based on standard errors works in the q-parametrization versus the p-parametrization. Moreover, the directly transformed confidence interval will fulfill the positivity constraint.

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.