Ok, proviamo questo. Darò due risposte: quella bayesiana, che secondo me è semplice e naturale, e una delle possibili frequentazioni.
Soluzione bayesiana
Assumiamo una prima Beta su , i, e., P ~ B e t un ( α , β ) , perché il modello Beta-binomiale è coniugato, il che significa che la distribuzione posteriore è anche una distribuzione beta con parametri α = α + k , β = β + n - k , (sto usando k per indicare il numero di successi in n prove, invece di y ). Pertanto, l'inferenza è notevolmente semplificata. Ora, se hai qualche conoscenza preliminare sui probabili valori dipp∼Beta(α,β)α^=α+k,β^=β+n−kkny , potresti usarlo per impostare i valori di α e β , cioè per definire il tuo beta precedente, altrimenti potresti assumere un precedente uniforme (non informativo), con α = β = 1 , o altri priori non informativi (vedi ad esempioqui). In ogni caso, il tuo posteriore èpαβα=β=1
Pr(p|n,k)=Beta(α+k,β+n−k)
Nell'inferenza bayesiana, tutto ciò che conta è la probabilità posteriore, nel senso che una volta che lo sai, puoi fare inferenze per tutte le altre quantità nel tuo modello. Vuoi fare inferenza sugli osservabili : in particolare, su un vettore di nuovi risultati y = y 1 , … , y m , dove m non è necessariamente uguale a n . In particolare, per ogni j = 0 , ... , m , vogliamo calcolare la probabilità di avere esattamente j successi nelle successive m prove, dato che abbiamo ottenuto kyy=y1,…,ymmnj=0,…,mjmksuccessi nelle precedenti prove; la funzione di massa predittiva posteriore:n
Pr(j|m,y)=Pr(j|m,n,k)=∫10Pr(j,p|m,n,k)dp=∫10Pr(j|p,m,n,k)Pr(p|n,k)dp
Tuttavia, il nostro modello binomiale per significa che, a condizione che p abbia un certo valore, la probabilità di avere j successi in m prove non dipende dai risultati passati: è semplicementeYpjm
f(j|m,p)=(jm)pj(1−p)j
Così l'espressione diventa
Pr(j|m,n,k)=∫10(jm)pj(1−p)jPr(p|n,k)dp=∫10(jm)pj(1−p)jBeta(α+k,β+n−k)dp
The result of this integral is a well-known distribution called the Beta-Binomial distribution: skipping the passages, we get the horrible expression
Pr(j|m,n,k)=m!j!(m−j)!Γ(α+β+n)Γ(α+k)Γ(β+n−k)Γ(α+k+j)Γ(β+n+m−k−j)Γ(α+β+n+m)
Our point estimate for j, given quadratic loss, is of course the mean of this distribution, i.e.,
μ=m(α+k)(α+β+n)
Now, let's look for a prediction interval. Since this is a discrete distribution, we don't have a closed form expression for [j1,j2], such that Pr(j1≤j≤j2)=0.95. The reason is that, depending on how you define a quantile, for a discrete distribution the quantile function is either not a function or is a discontinuous function. But this is not a big problem: for small m, you can just write down the m probabilities Pr(j=0|m,n,k),Pr(j≤1|m,n,k),…,Pr(j≤m−1|m,n,k) and from here find j1,j2 such that
Pr(j1≤j≤j2)=Pr(j≤j2|m,n,k)−Pr(j<j1|m,n,k)≥0.95
Of course you would find more than one couple, so you would ideally look for the smallest [j1,j2] such that the above is satisfied. Note that
Pr(j=0|m,n,k)=p0,Pr(j≤1|m,n,k)=p1,…,Pr(j≤m−1|m,n,k)=pm−1
are just the values of the CMF (Cumulative Mass Function) of the Beta-Binomial distribution, and as such there is a closed form expression, but this is in terms of the generalized hypergeometric function and thus is quite complicated. I'd rather just install the R package extraDistr and call pbbinom to compute the CMF of the Beta-Binomial distribution. Specifically, if you want to compute all the probabilities p0,…,pm−1 in one go, just write:
library(extraDistr)
jvec <- seq(0, m-1, by = 1)
probs <- pbbinom(jvec, m, alpha = alpha + k, beta = beta + n - k)
where alpha and beta are the values of the parameters of your Beta prior, i.e., α and β (thus 1 if you're using a uniform prior over p). Of course it would all be much simpler if R provided a quantile function for the Beta-Binomial distribution, but unfortunately it doesn't.
Practical example with the Bayesian solution
Let n=100, k=70 (thus we initially observed 70 successes in 100 trials). We want a point estimate and a 95%-prediction interval for the number of successes j in the next m=20 trials. Then
n <- 100
k <- 70
m <- 20
alpha <- 1
beta <- 1
where I assumed a uniform prior on p: depending on the prior knowledge for your specific application, this may or may not be a good prior. Thus
bayesian_point_estimate <- m * (alpha + k)/(alpha + beta + n) #13.92157
Clearly a non-integer estimate for j doesn't make sense, so we could just round to the nearest integer (14). Then, for the prediction interval:
jvec <- seq(0, m-1, by = 1)
library(extraDistr)
probabilities <- pbbinom(jvec, m, alpha = alpha + k, beta = beta + n - k)
The probabilities are
> probabilities
[1] 1.335244e-09 3.925617e-08 5.686014e-07 5.398876e-06
[5] 3.772061e-05 2.063557e-04 9.183707e-04 3.410423e-03
[9] 1.075618e-02 2.917888e-02 6.872028e-02 1.415124e-01
[13] 2.563000e-01 4.105894e-01 5.857286e-01 7.511380e-01
[17] 8.781487e-01 9.546188e-01 9.886056e-01 9.985556e-01
For an equal-tail probabilities interval, we want the smallest j2 such that Pr(j≤j2|m,n,k)≥0.975 and the largest j1 such that Pr(j<j1|m,n,k)=Pr(j≤j1−1|m,n,k)≤0.025. This way, we will have
Pr(j1≤j≤j2|m,n,k)=Pr(j≤j2|m,n,k)−Pr(j<j1|m,n,k)≥0.975−0.025=0.95
Thus, by looking at the above probabilities, we see that j2=18 and j1=9. The probability of this Bayesian prediction interval is 0.9778494, which is larger than 0.95. We could find shorter intervals such that Pr(j1≤j≤j2|m,n,k)≥0.95, but in that case at least one of the two inequalities for the tail probabilities wouldn't be satisfied.
Frequentist solution
I'll follow the treatment of Krishnamoorthy and Peng, 2011. Let Y∼Binom(m,p) and X∼Binom(n,p) be independently Binominally distributed. We want a 1−2α−prediction interval for Y, based on a observation of X. In other words we look for I=[L(X;n,m,α),U(X;n,m,α)] such that:
PrX,Y(Y∈I)=PrX,Y(L(X;n,m,α)≤Y≤U(X;n,m,α)]≥1−2α
The "≥1−2α" is due to the fact that we are dealing with a discrete random variable, and thus we cannot expect to get exact coverage...but we can look for an interval which has always at least the nominal coverage, thus a conservative interval. Now, it can be proved that the conditional distribution of X given X+Y=k+j=s is hypergeometric with sample size s, number of successes in the population n and population size n+m. Thus the conditional pmf is
Pr(X=k|X+Y=s,n,n+m)=(nk)(ms−k)(m+ns)
The conditional CDF of X given X+Y=s is thus
Pr(X≤k|s,n,n+m)=H(k;s,n,n+m)=∑ki=0(ni)(ms−i)(m+ns)
The first great thing about this CDF is that it doesn't depend on p, which we don't know. The second great thing is that it allows to easily find our PI: as a matter of fact, if we observed a value k of X, then the 1−α lower prediction limit is the smallest integer L such that
Pr(X≥k|k+L,n,n+m)=1−H(k−1;k+L,n,n+m)>α
correspondingly, the the 1−α upper prediction limit is the largest integer such that
Pr(X≤k|k+U,n,n+m)=H(k;k+U,n,n+m)>α
Thus, [L,U] is a prediction interval for Y of coverage at least 1−2α. Note that when p is close to 0 or 1, this interval is conservative even for large n, m, i.e., its coverage is quite larger than 1−2α.
Practical example with the Frequentist solution
Same setting as before, but we don't need to specify α and β (there are no priors in the Frequentist framework):
n <- 100
k <- 70
m <- 20
The point estimate is now obtained using the MLE estimate for the probability of successes, p^=kn, which in turns leads to the following estimate for the number of successes in m trials:
frequentist_point_estimate <- m * k/n #14
For the prediction interval, the procedure is a bit different. We look for the largest U such that Pr(X≤k|k+U,n,n+m)=H(k;k+U,n,n+m)>α, thus let's compute the above expression for all U in [0,m]:
jvec <- seq(0, m, by = 1)
probabilities <- phyper(k,n,m,k+jvec)
We can see that the largest U such that the probability is still larger than 0.025 is
jvec[which.min(probabilities > 0.025) - 1] # 18
Same as for the Bayesian approach. The lower prediction bound L is the smallest integer such that Pr(X≥k|k+L,n,n+m)=1−H(k−1;k+L,n,n+m)>α, thus
probabilities <- 1-phyper(k-1,n,m,k+jvec)
jvec[which.max(probabilities > 0.025) - 1] # 8
Thus our frequentist "exact" prediction interval is [L,U]=[8,18].