La matrice di informazioni osservate è uno stimatore coerente della matrice di informazioni prevista?


16

Sto cercando di dimostrare che la matrice di informazioni osservate valutata allo stimatore della massima verosimiglianza debolmente coerente (MLE) è uno stimatore debolmente coerente della matrice di informazioni attesa. Questo è un risultato ampiamente citato ma nessuno fornisce un riferimento o una prova (ho esaurito penso che le prime 20 pagine dei risultati di Google e i miei libri di testo delle statistiche)!

Usando una sequenza debolmente coerente di MLE posso usare la legge debole di grandi numeri (WLLN) e il teorema di mappatura continua per ottenere il risultato che desidero. Tuttavia, credo che il teorema della mappatura continua non possa essere usato. Penso invece che debba essere utilizzata la legge uniforme dei grandi numeri (ULLN). Qualcuno sa di un riferimento che ne ha una prova? Ho un tentativo all'ULLN ma per ora lo ometto per brevità.

Mi scuso per la lunghezza di questa domanda, ma la notazione deve essere introdotta. La notazione è come gente (la mia prova è alla fine).

Supponiamo di avere un campione iid di variabili casuali { Y 1 , ... , Y N }{Y1,,YN} con densità f ( ˜ Y | θ )f(Y~|θ) , dove θ Θ R kθΘRk (qui ˜ YY~ è solo una variabile casuale generica con la stessa densità come uno qualsiasi dei membri del campione). Il vettore Y = ( Y 1 , , Y N ) TY=(Y1,,YN)T è il vettore di tutti i vettori campione in cui Y iR nYiRn per tutti i = 1 , ... , Ni=1,,N . Il vero valore del parametro di densità è θ 0θ0 e θ N ( Y ) è debolmente coerente stimatore di massima verosimiglianza (MLE) di θ 0 . Fatte salve le condizioni di regolarità, la matrice Informazioni Fisher può essere scritta comeθ^N(Y)θ0

I ( θ ) = - E θ [ H θ ( log f ( ˜ Y | θ ) ]

I(θ)=Eθ[Hθ(logf(Y~|θ)]

dove H θHθ è la matrice hessiana. L'equivalente del campione è

I N ( θ ) = N i = 1 I y i ( θ ) ,

IN(θ)=i=1NIyi(θ),

dove I y i = - E θ [ H θ ( log f ( Y i | θ ) ]Iyi=Eθ[Hθ(logf(Yi|θ)] . La matrice di informazioni osservate è;

J ( θ ) = - H θ ( log f ( y | θ )J(θ)=Hθ(logf(y|θ) ,

(alcune persone chiedono la matrice è valutata a θ , ma alcuni non lo fanno). La matrice di informazioni osservate di esempio è;θ^

J N ( θ ) = N i = 1 J y i ( θ )JN(θ)=Ni=1Jyi(θ)

dove J y i ( θ ) = - H θ ( log f ( y i | θ ) .Jyi(θ)=Hθ(logf(yi|θ)

I can prove convergence in probability of the estimator N1JN(θ)N1JN(θ) to I(θ)I(θ), but not of N1JN(ˆθN(Y))N1JN(θ^N(Y)) to I(θ0)I(θ0). Here is my proof so far;

Ora ( J N ( θ ) ) r s = - N i = 1 ( H θ ( log f ( Y i | θ ) ) r s è l'elemento ( r , s ) di J N ( θ ) , per ogni r , s = 1 , , k(JN(θ))rs=Ni=1(Hθ(logf(Yi|θ))rs(r,s)JN(θ)r,s=1,,k . Se il campione è iid, allora dalla legge debole di grandi numeri (WLLN), la media di questi riepiloghi converge in probabilità a - E θ [ ( H θ ( log f ( Y 1 | θ ) ) r s ] = ( I Y 1 ( θ ) ) r s = ( I ( θ ) ) r s . Quindi N - 1 ( J N ( θ )Eθ[(Hθ(logf(Y1|θ))rs]=(IY1(θ))rs=(I(θ))rs) r s P ( I ( θ ) ) r s per tutto r , s = 1 , , k , e quindi N - 1 J N ( θ ) P I ( θ ) . Purtroppo non possiamo concludere semplicemente N - 1 J N ( θ N ( Y ) ) P I ( θN1(JN(θ))rsP(I(θ))rsr,s=1,,kN1JN(θ)PI(θ)0)N1JN(θ^N(Y))PI(θ0) by using the continuous mapping theorem since N1JN()N1JN() is not the same function as I()I().

Any help on this would be greatly appreciated.



does my answer below address answer your question?
Dapz

1
@Dapz Please accept my sincerest apologies for not replying to you until now - I made the mistake of assuming nobody would answer. Thank-you for your answer below - I have upvoted it since I can see it is most useful, however I need to spend a little time considering it. Thank-you for your time, and I will reply to your post below soon.
dandar

Risposte:


7

I guess directly establishing some sort of uniform law of large numbers is one possible approach.

Here is another.

We want to show that JN(θMLE)NPI(θ)JN(θMLE)NPI(θ).

(As you said, we have by the WLLN that JN(θ)NPI(θ)JN(θ)NPI(θ). But this doesn't directly help us.)

One possible strategy is to show that |I(θ)JN(θ)N|P0.

|I(θ)JN(θ)N|P0.

and

|JN(θMLE)NJN(θ)N|P0

|JN(θMLE)NJN(θ)N|P0

If both of the results are true, then we can combine them to get |I(θ)JN(θMLE)N|P0,

|I(θ)JN(θMLE)N|P0,

which is exactly what we want to show.

The first equation follows from the weak law of large numbers.

The second almost follows from the continuous mapping theorem, but unfortunately our function g()g() that we want to apply the CMT to changes with NN: our gg is really gN(θ):=JN(θ)NgN(θ):=JN(θ)N. So we cannot use the CMT.

(Comment: If you examine the proof of the CMT on Wikipedia, notice that the set BδBδ they define in their proof for us now also depends on nn. We essentially need some sort of equicontinuity at θθ over our functions gN(θ)gN(θ).)

Fortunately, if you assume that the family G={gN|N=1,2,}G={gN|N=1,2,} is stochastically equicontinuous at θθ, then it immediately follows that for θMLEPθθMLEPθ, |gn(θMLE)gn(θ)|P0.

|gn(θMLE)gn(θ)|P0.

(See here: http://www.cs.berkeley.edu/~jordan/courses/210B-spring07/lectures/stat210b_lecture_12.pdf for a definition of stochastic equicontinuity at θθ, and a proof of the above fact.)

Therefore, assuming that GG is SE at θθ, your desired result holds true and the empirical Fisher information converges to the population Fisher information.

Now, the key question of course is, what sort of conditions do you need to impose on GG to get SE? It looks like one way to do this is to establish a Lipshitz condition on the entire class of functions GG (see here: http://econ.duke.edu/uploads/media_items/uniform-convergence-and-stochastic-equicontinuity.original.pdf ).


1

The answer above using stochastic equicontinuity works very well, but here I am answering my own question by using a uniform law of large numbers to show that the observed information matrix is a strongly consistent estimator of the information matrix , i.e. N1JN(ˆθN(Y))a.s.I(θ0)N1JN(θ^N(Y))a.s.I(θ0) if we plug-in a strongly consistent sequence of estimators. I hope it is correct in all details.

We will use IN={1,2,...,N}IN={1,2,...,N} to be an index set, and let us temporarily adopt the notation J(˜Y,θ):=J(θ)J(Y~,θ):=J(θ) in order to be explicit about the dependence of J(θ)J(θ) on the random vector ˜YY~. We shall also work elementwise with (J(˜Y,θ))rs(J(Y~,θ))rs and (JN(θ))rs=Ni=1(J(Yi,θ))rs(JN(θ))rs=Ni=1(J(Yi,θ))rs, r,s=1,...,kr,s=1,...,k, for this discussion. The function (J(,θ))rs(J(,θ))rs is real-valued on the set Rn×ΘRn×Θ, and we will suppose that it is Lebesgue measurable for every θΘθΘ. A uniform (strong) law of large numbers defines a set of conditions under which

supθΘ|N1(JN(θ))rsEθ[(J(Y1,θ))rs]|=supθΘ|N1Ni=1(J(Yi,θ))rs(I(θ))rs|a.s0(1)supθΘN1(JN(θ))rsEθ[(J(Y1,θ))rs]=supθΘN1Ni=1(J(Yi,θ))rs(I(θ))rsa.s0(1)

The conditions that must be satisfied in order that (1) holds are (a) ΘΘ is a compact set; (b) (J(˜Y,θ))rs(J(Y~,θ))rs is a continuous function on ΘΘ with probability 1; (c) for each θΘθΘ (J(˜Y,θ))rs(J(Y~,θ))rs is dominated by a function h(˜Y)h(Y~), i.e. |(J(˜Y,θ))rs|<h(˜Y)|(J(Y~,θ))rs|<h(Y~); and (d) for each θΘθΘ Eθ[h(˜Y)]<Eθ[h(Y~)]<;. These conditions come from Jennrich (1969, Theorem 2).

Now for any yiRnyiRn, iINiIN and θSΘθSΘ, the following inequality obviously holds

|N1Ni=1(J(yi,θ))rs(I(θ))rs|supθS|N1Ni=1(J(yi,θ))rs(I(θ))rs|.(2)N1Ni=1(J(yi,θ))rs(I(θ))rssupθSN1Ni=1(J(yi,θ))rs(I(θ))rs.(2)

Suppose that {ˆθN(Y)}{θ^N(Y)} is a strongly consistent sequence of estimators for θ0θ0, and let ΘN1=BδN1(θ0)KΘΘN1=BδN1(θ0)KΘ be an open ball in RkRk with radius δN10δN10 as N1, and suppose K is compact. Then since ˆθN(Y)ΘN1 for N sufficiently large enough we have P[limN{ˆθN(Y)ΘN1}]=1 for sufficiently large N. Together with (2) this implies

P[limN{|N1Ni=1(J(Yi,ˆθN(Y)))rs(I(ˆθN(Y)))rs|supθΘN1|N1Ni=1(J(Yi,θ))rs(I(θ))rs|}]=1.(3)

Now ΘN1Θ implies conditions (a)-(d) of Jennrich (1969, Theorem 2) apply to ΘN1. Thus (1) and (3) imply

P[limN{|N1Ni=1(J(Yi,ˆθN(Y)))rs(I(ˆθN(Y)))rs|=0}]=1.(4)

Since (I(ˆθN(Y)))rsa.s.I(θ0) then (4) implies that N1(JN(ˆθN(Y)))rsa.s.(I(θ0))rs. Note that (3) holds however small ΘN1 is, and so the result in (4) is independent of the choice of N1 other than N1 must be chosen such that ΘN1Θ. This result holds for all r,s=1,...,k, and so in terms of matrices we have N1JN(ˆθN(Y))a.s.I(θ0).

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.