νt
νt
set.seed(1234)
n <- 10
x <- rt(n, df=2.5)
make_loglik <- function(x)
Vectorize( function(nu) sum(dt(x, df=nu, log=TRUE)) )
loglik <- make_loglik(x)
plot(loglik, from=1, to=100, main="loglikelihood function for df parameter", xlab="degrees of freedom")
abline(v=2.5, col="red2")
n
Proviamo alcune simulazioni:
t_nu_mle <- function(x) {
loglik <- make_loglik(x)
res <- optimize(loglik, interval=c(0.01, 200), maximum=TRUE)$maximum
res
}
nus <- replicate(1000, {x <- rt(10, df=2.5)
t_nu_mle(x) }, simplify=TRUE)
> mean(nus)
[1] 45.20767
> sd(nus)
[1] 78.77813
Mostrare la stima è molto instabile (guardando l'istogramma, una parte considerevole dei valori stimati è al limite superiore dato per ottimizzare di 200).
Ripetendo con una dimensione del campione maggiore:
nus <- replicate(1000, {x <- rt(50, df=2.5)
t_nu_mle(x) }, simplify=TRUE)
> mean(nus)
[1] 4.342724
> sd(nus)
[1] 14.40137
che è molto meglio, ma la media è ancora molto al di sopra del valore reale di 2,5.
Quindi ricorda che questa è una versione semplificata del vero problema in cui devono essere stimati anche i parametri di posizione e scala.
tν